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The high precision expected in e
+

e
− collider experiments allows the reconstruction of

the fundamental supersymmetric scalar mass parameters at the unification scale and
the D-terms related to the breaking of GUT symmetries. We investigate the potential
of this method in the lepton sector of SO(10) breaking directly to the SM gauge group.
SO(10) naturally incorporates right-handed neutrino superfields in a seesaw scenario.
The mass of the third generation heavy neutrino can also be estimated with our method.

The observation of neutrino oscillations has provided experimental proof for non-zero
neutrino masses [2]. When right-handed neutrinos, not carrying any Standard Model gauge
charges, are included in the set of leptons and quarks, the symmetry group SO(10) is nat-
urally suggested as the grand unification group [3]. For theories formulated in a supersym-
metric frame to build a stable bridge between the electroweak scale and the Planck scale,
a scalar R-neutrino superfield is added to the spectrum of the minimal supersymmetric
standard model. A natural explanation of the very light neutrino masses in relation to
the electroweak scale is offered by the seesaw mechanism [4]. For right-handed Majorana
neutrino masses MνRi

in a range close to the GUT scale, small neutrino masses can be
generated quite naturally by this mechanism: mνi

∼ m2

qi
/MνRi

, with mqi
denoting up-type

quark masses.

We investigate a one-step breaking scenario in which SO(10) is directly broken to the
SM gauge group at the unification scale ΛU . The SO(10) scalar soft SUSY breaking sector
is parametrized by the gravity induced mass parameters m16 for the matter superfields
and m101

, m102
for two Higgs superfields. Starting at ΛU , the mass parameters evolve,

following the renormalization group (RG), down to the electroweak scale. Once the masses
of supersymmetric particles are measured, the RG evolution from the Tera-scale upwards will
allow us to reconstruct the physics scenario at the GUT scale [5, 6]. The matter superfields of
the three generations belong to 16-dimensional representations of SO(10) and the standard
Higgs superfields to two 10-dimensional representations, while a Higgs superfield in the 126-
dimensional representation generates the Majorana masses for the right-handed neutrinos.
The couplings of this 126 Higgs to the other matter fields are assumed to be small. The
Higgs sector of this model may be expanded to solve certain SO(10) GUT problems such as
doublet-triplet splitting and proton decay, but such an expansion does not affect the present
study significantly.

It follows from the Higgs-{10} SO(10) relation that Yν = Yu between the neutrino and up-
type Yukawa matrices at ΛU . The effective mass matrix of the light neutrinos is constrained
by the results of the oscillation experiments, mν = U∗

MNS · diag(mν1
,mν2

,mν3
) · U†

MNS .
We assume the normal hierarchy for the light neutrino masses, and for the MNS mixing
matrix the tri-bimaximal form. From the seesaw relation MνR

= Yνm−1

ν Y T
ν · v2

u, the heavy
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Majorana R-neutrino mass matrix MνR
can finally be derived as

MνR
≈ diag(mu,mc,mt)m

−1

ν diag(mu,mc,mt). (1)

For normal hierarchy, mν3
and mν2

are given by the squared mass differences measured in
neutrino oscillation experiments. Solving Eq. (1) the MνRi

spectrum is then predicted by the
up-quark masses mu,c,t and the lightest neutrino mass mν1

at the GUT scale. Consequently,
the mass spectrum of the R-neutrinos is strongly ordered in SO(10) with minimal Higgs
content,

MνR3
: MνR2

: MνR1
∼ m2

t : m2

c : m2

u. (2)

The Yukawa mass matrix squared, which determines the connection of the slepton masses
in the third generation at low and high scales, is dominated by the 33 element,

(

Y †
ν Yν

)

33
≈

m2

t (ΛU )/v2

u ≈ 0.3 , while the other elements are suppressed to a level of 10−2 down to 10−5.
The scalar mass parameters at the unification scale will be assumed universal for the

SO(10) representations. However, the breaking of the rank-5 SO(10) symmetry group to the
lower rank-4 SM group generates GUT D-terms DU violating the scalar mass universality
at ΛU . To leading logarithmic order, the solutions of the RG equations, the masses of the
selectrons and the L-type e-sneutrino, can be expressed in terms of the high scale parameter
M0, the universal gaugino mass parameter M1/2 and the GUT and electroweak D-terms,
DU and DEW = 1/2M2

Z cos 2β, respectively:

m2

ẽR
= M2

0
+ DU + αRM2

1/2
− 6

5
S′ − 2s2

W DEW ,

m2

ẽL
= M2

0
− 3DU + αLM2

1/2
+ 3

5
S′ − c2W DEW , (3)

m2

ν̃eL
= M2

0
− 3DU + αLM2

1/2
− 6

5
S′ + DEW .

The coefficients αL and αR can be calculated from the gaugino/gauge boson loops, and a
numerical integration yields αR ≈ 0.15 and αL ≈ 0.5. The universal gaugino mass parameter
M1/2 can be pre-determined in the chargino/neutralino sector. The non-universal initial
conditions due to the D-terms generate the small generation-independent corrections S′ =
−4DUα1(M̃)/α1(ΛU ) from the GUT to the Tera-scale M̃ .

Representations of the scalar masses in the third generation are complemented by νRτ

loops coupled by Yukawa interactions with the L and R fields. The masses of the third
generation are shifted relative to the masses of the first two generations by two terms [5, 6]:

m2

τ̃R
= m2

ẽR
+ m2

τ − 2∆τ ,

m2

τ̃L
= m2

ẽL
+ m2

τ − ∆τ − ∆ντ
, (4)

m2

ν̃τL
= m2

ν̃eL
− ∆τ − ∆ντ

.

The shifts ∆τ and ∆ντ
, generated by loops involving charged lepton and neutrino superfields,

respectively, are predicted by the renormalization group in the SO(10) scenario,

∆τ ≈
m2

τ (ΛU )

8π2v2

d

(

3M2

0
+ A2

0

)

log
Λ2

U

M2

Z

, (5)

∆ντ
≈

m2

t (ΛU )

8π2v2
u

(

3M2

0
+ A2

0

)

log
Λ2

U

M2
νR3

. (6)
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Figure 1: Evolution of scalar mass parameters
between ΛU and the Tera-scale for DU = 0
with a r.h. neutrino mass MνR3

≈ 1015 GeV.

Anticipating measurements of high preci-
sion at the ILC, such an SO(10) scenario
can be investigated in all its facets. As
a concrete example, we study the follow-
ing LR-extended scenario which is close to
SPS1a/a′ [7, 8]:

M0 = 90 GeV
M1/2 = 250 GeV

A0 = −640 GeV
DU = (30 GeV)2

tan β = 10
signµ = +
MνR3

= 7.21 · 1014 GeV.

(7)

In this scenario, the masses of the charged
sleptons can be measured with high pre-
cision in slepton pair production at ILC
[9], while the sneutrino masses can be de-
termined accurately from the decays of
charginos [5]. Taking into account squark
mass measurement at the LHC in addition,
a global analysis leads to an accurate deter-
mination of A0 [7, 11].

The measurement of the slepton and
sneutrino masses of the first two generations
allows us to extract the common scalar pa-
rameter M0 as well as the D-term DU . The approximate relations are given in Eq. (4).
Including the complete one-loop and the leading two-loop corrections, the evolution of the
scalar mass parameters is displayed in Figure 1. The right-handed neutrino mainly affects
the evolution of the mass parameter m2

L3
in the third generation. The characteristic kink in

the evolution between m2

L3
and m2

L1
is exemplified in Figure 1 for a right-handed neutrino

mass MνR3
of about 1015 GeV.

With the experimental measurement errors, the high-scale parameters can be calculated.
With the RG evolution equations are evaluated to 2-loop order [12], a global analysis in-

dicates that the high-scale parameters M0 and D
1/2

U , can be reconstructed at per-mill to

per-cent accuracy, M0 = (90 ± 0.34) GeV, D
1/2

U = 30 ± 0.7 GeV.
The right-handed neutrino mass is fixed by the intersection of the parameter ∆ντ

, Eq. (6),
with the measured value ∆exp

ντ
= (4.7 ± 0.4) · 103 GeV2 extracted from the slepton masses.

This is shown in Figure 2. The effect of the heavy νR3 mass can indeed be traced back
from measured slepton masses in universal supersymmetric theories. For the given scenario,
the right-handed neutrino mass of the third generation is estimated in the margin MνR3

=
1014.9±0.2 GeV. Based on this estimate, the seesaw mechanism determines the value of
lightest neutrino mass to mν1

= 10−2.5±0.3 eV.
Thus the combination of SO(10) symmetry, i.e. universal scalar masses and gauge cou-

plings, and the seesaw mechanism leads, besides the high-scale SUSY parameters, to the
determination of the heavy Majorana mass MνR3

of the third generation and, in a consecu-
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Figure 2: Shift ∆ντ
of the third generation L slepton mass parameter generated by loops

involving heavy r.h. neutrinos. The blue wedge corresponds to the prediction from the renor-

malization group, whereas the green band is determined by low-energy mass measurements.

tive step, to an estimate value of the lightest neutrino mass mν1
in hierarchical theories.
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