Luminosity measurement

Halina Abramowicz Tel Aviv University for the FCAL Collaboration

- Bhabha scattering and LumCal
- Requirements on LumCal
- Laser control test

Snowmass, Aug 2005

Bhabha Scattering

 $e^+e^- \rightarrow e^+e^-$

$$L = \frac{N_{LumCal} - N_{bgr}}{\mathcal{E} \ \sigma_{Bhabha}}$$

Goal of FCAL Collaboration measure L at ILC with accuracy

$$\frac{\Delta L}{L} \le 10^{-4}$$

(*OPAL*: $\Delta L/L = 3 \times 10^{-4} (stat) \oplus 5.4 \times 10^{-4} (theo)$) (*ALEPH*: $\Delta L/L = 6 \times 10^{-4} (stat) \oplus 6.1 \times 10^{-4} (theo))$ Snowmass, Aug 2005 H. Abramowicz, TAU, FCAL Coll.

Luminosity Measurement

26.2 < LumCal < 80 mrad; 30 < Fiducial Volume < 75 mrad σ ([¯]nb) At $\sqrt{s} = 500 \text{ GeV} \sigma (30 < \theta < 75 \text{ mrad}) \approx 3 \text{ nb}$ for nominal luminosity $L_N = 3 \times 10^{34} cm^{-2} s^{-1}$ 10 $\Rightarrow N_{R} = 9 \times 10^{8} / year$ 1 800 200 400 600 1000 √s (ŒV) 7000 6000 5000 4000 3000 2000 $\frac{d\sigma_{B}}{d\theta} \approx \frac{32\pi\alpha^{2}}{s} \frac{1}{\theta^{3}}$

3

90 100

mrad

Fast Simulations

Systematic effects due to Geometry

Selection: $E(e^+)$, $E(e^-)$, $\theta(e^+)$, $\theta(e^-)$ as generated $E(e^+) > 0.8 E_{beam}$, $E(e^-) > 0.8 E_{beam}$ $30 < \theta(e^+)$ or $\theta(e^-) < 75$ mrad (never both, alternate e^+ , e^-) \Rightarrow reduces sensitivity to the IP position

Methodology: misreconstruction of $\boldsymbol{\theta},$ Energy applied and cuts reapplied.

Systematic error \leftrightarrow change in the number of events

Inner diameter of LumCal

Snowmass, Aug 2005

Radial beam position

Snowmass, Aug 2005

Longitudinal distance of forward and backward calorimeters

Longitudinal offset of the IP

$$\frac{\Delta L}{L} \le 10^{-4} \qquad \Rightarrow long.IPoffset \le 2cm$$

Snowmass, Aug 2005

AT

Tilt of the calorimeter

Snowmass, Aug 2005

Snowmass, Aug 2005

Twist between the F/B calorimeter

 $\Delta \phi$ cut \Rightarrow reduces radiative tail

 $\Delta \phi$ < 20 mrad \Rightarrow reject 10% of the events

 $\frac{\Delta L}{L} \leq 10^{-4} \Rightarrow \sigma_{\Delta \varphi} \leq 0.1 \, mrad$

Snowmass, Aug 2005

H. Abramowicz, TAU, FCAL Coll.

12

Beam size at IP

Beams at TESLA

No relevant variation

Snowmass, Aug 2005

Position resolution

Energy resolution

Snowmass, Aug 2005

H. Abramowicz, TAU, FCAL Coll.

15

 $\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}}$

Center of Mass Energy

Requirement analysis dependent

Snowmass, Aug 2005

Full Simulations (BRAHMS)

Polar Reconstruction

Present Understanding (pad option)

10 cylinders	(θ)
--------------	-----

60 cylinders (θ)

Based on optimizing theta measurement

• • • • • • • • • • • • • • • • • • • •		
Parameter	Opal	LumiCal
Distance from the IP	±2.5 m	±3.05 m
Sampling layers	19	30
Cylinders	32	60 (middle layers), 10 (first and last layers)
Sectors	32	24
Pitch in r (mm)	2.5	3.3 (middle layers),
		20 (first and last layers)
Pitch in θ (rad)	0.001	0.001 (middle layers),
		0.006 (first and last layers)
Pitch in ϕ (deg)	11.25	15
Pitch in z	1 X ₀	1 X ₀
	$2 X_0$ (last 4 layers)	
r_{min} (mm)	62	80
r_{max} (mm)	142	280
θ_{min} (mrad)	25	26
θ_{max} (IIII ad)	57	91
$Z_{max} - Z_{min}$ (cm)	14	20
Electronics channels	19,456	25,200
in one detector arm		

H. Abramowicz, TAU, FCAL Coll.

23

Future R&D plans

Additional hardware design constrains and electronics simulation (digitisation, reality noise parameters, silicon production constrains)

Additional background studies (two photon events, beamstrahlung hitting the detector)

Luminosity with polarised beams

Luminosity with a crossing angle

Position measurement

