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Outline

 Why do we need Diamond Detector @ ILC?
 BeamCal challenge
 Diamond properties
 Experimental infrastructure
 Charge collection

– Ideal crystal, Radiation damaged crystal

 Polarization creation, model, predictions
 Some selected experimental studies: 

– CCD vs Dose, CCD time dependence
– Future plans

 Summary
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The International Linear Collider
~30km

Parameters:
500 GeV (1 TeV upgrade possible)
2 x 1034 cm-2sec-1

electron polarization ~80 %
positron polarization ~30 % (60 %)
beam sizes: σx ≈ 600nm, σy ≈ 6nm, σz = 300μm
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Design of the Forward Region

ILC RDR

BeamCal

LumiCal

GamCal
~185m
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BeamCal Design
● Compact em calorimeter with 
sandwich structure:
●30 layers of 1 X0                                              

   3.5mm W and 0.3mm sensor
 Angular coverage from ~5mrad to ~45 

mrad
 Moliére radius RM ≈ 1cm
 Segmentation between 0.5 and 0.8 x RM

BeamCal

W absorber layers

Radiation hard sensors
with thin readout planes

Space for readout electronics

LumiCal
BeamCal
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The Challenges for BeamCal

 e+e- pairs from beamstrahlung are deflected 
into the BeamCal 

15000 e+e-  per BX  

=>    10 – 20 TeV total energy dep.

 ~ 10 MGy per year strongly dependent on 
the beam and magnetic field configuration  

=>    radiation hard sensors

Detect the signature of single high energetic 
particles on top of the background.

=>    high dynamic range/linearity

e- e+

Creation of beamstrahlung at the ILC

Up to 10 MGy/a

e-

e-

γ
e-

γ

e+
e.g. Breit-Wheeler process
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Diamond properties

 Density       3.52 g cm-3

 Dielectric constant     5.7
 Breakdown field     107 V cm-1

 Resistivity       > 1011 Ω cm
 Band Gap    5.5 eV
 Electron mobility     1800 (4500) cm2 V-1 s-1

 Hole mobility      1200 (3800) cm2 V-1 s-1

 Energy to create e-h pair     13.1 eV
 Average signal created     36 e μm-1

* High-purity single crystal CVD
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         sc CVD diamond from Element 6 
           (provided by GSI, Darmstadt)
Thickness 326 µm, active area 3mm in diameter

2 sensors, one is irradiated up to 5 MGy  dose
      at the 10 MeV electron beam in 2007 and
         then up to 10 MGy  in Dec 2008

CCE=
Qcollected
Qinduced

CCD=d⋅
Qcollected
Qinduced

Charge collection efficiency:

Charge collection distance:
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MIP Response of scCVD Diamond

High statistics Diamond spectrum

Sr90 source

Preamplifier

Sensor box

Trigger box

& Gate

PA

discr

discr

delay ADC
Sr90

diamond

Scint. PM1

PM2
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High Dose Irradiation

 Irradiation up to ~12 MGy:
8.5 - 8.6 MeV electrons and beam currents from 10 to 250 
nA 
(corresponding to 60 to 1800 kGy/h.)

 Keeping the sensor under bias (100 V) permanently.
 This is a much higher dose rate compared to the 

application at the ILC (~1 kGy/h)

(1 MGy = 100 Mrad is deposited by about 4 x 1015 e-/cm2)

Superconducting DArmstadt LINear ACcelerator
Technical University of Darmstadt
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High dose irradiation at 
TU-Darmstadt

Beam

Collimator

Detector Box

Faraday
 Cup
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'Ideal' crystal charge collection

Charge collection efficiency depends on E

HV=0

Recombination

  Charge
collection

+

-

HV≠0
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Radiation damaged crystal

 Radiation causes local damages of the lattice 
structure.

 These local damages (traps) are able to capture 
free charge carriers and release them after some 
time ionization

 Assumptions:
 Trap density is 

uniform (bulk 
radiation damage)

 Traps are created 
independently 
(linearity vs dose)
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Irradiation of single crystal CVD Diamond

After absorbing 5 MGy: 

CVD diamonds still operational.

 Very low leakage currents (~pA) 
after the irradiation.
 Decrease of the charge collection 
distance with the dose.
 Generation of trapping centers 
due to irradiation. Traps release?

CCD (from source setup)
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Pure trapping/detrapping mechanism
                      is contradictory :
- expected CCD

I detector
 > CCD

MIP
 (not the case)

- too high “missing charge”  n
Traps 

~ n
Atoms

 at 5 MGy?
- too high cross section for defects creation dN

traps
/dt > N

eh

“missing charge”

Example:
Beam

det
 – 5x1010 e/sec

1.2x104 eh pairs/particle
Irradiation time 3.6x104 sec
Detector volume 2.3x10-3 cm3

Pairs produced  ~1022 cm-3

Atom density 1.77x1023 cm-3

Recombination!
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Labtest of damaged single crystal CVD Diamond

After absorbing 5 MGy: 

After switching HV on signal 
drops with time

Switching HV off after signal
stabilization: strong signal of
opposite polarity is observed

Signal vs time behavior depends
on the MIPs rate

Dynamic polarization !

Measurements at 90Sr-source setup:
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Model of sCVD Diamond Polarization

Eo

Epol

-
+

+
-

-

+
-

+
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Model of sCVD Diamond Polarization - 1

Steady state field

   Low field,
recombination

Effective charge collection regions

Space charge

Change of signal shape

Steady
 stateTo be confirmed

time

Initial field

HV on
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Model of sCVD Diamond Polarization - 2

'Switch OFF' field

Space charge

Change of signal shape
and  POLARITY !!!

Steady
 state

time

E

HV –> 0 !
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Model of sCVD Diamond Polarization - 3

Space charge

Change of signal size
time

E ≈ 0

HV = 0
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Polarization model prediction:

Detector signal shape is changing with the 
polarization development:

Radiation damaged crystal under 90Sr source
Start of the test After few hours

Collected charge drops, but amplitude rises
               To be confirmed !!!
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90Sr setup: CCD time dependence

Diamond sCVD sensor after 5 MGy

     CCD at t=0 allows
to extract n

trap
R2

trap  
value

CCE 0=
2
aD

⋅1−1−exp −aD 

aD 
a=

Rtrap
2

l 0
⋅
n free
N

Steady state CCD is sensitive 
to n

trap
 ,T

0 
 and signal rate

Curve shape depends on the rate,
trap properties and trap density.
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CCD vs time dependence, low rate

 
Trigger rate
about 12 Hz,
h

Source
 ~ 36 mm

5 MGy
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CCD vs time dependence, high rate

“High rate” data

CCD dependence on HV
  in case of switching
  polarity is NOT yet
in the model. What is
E-field dependent:
trap release time, or/and
  capture probability?

Frenkel effect?

h
Source

 ~ 20 mm

5 MGy
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So14-04 scCVDD additional 
irradiation Dec 2008

Jun 2007 Data

Dec 2008 Data

 No annealing!
(1.5 years, a lot
of tests with 90Sr
source, UV-light,
   several TSC
  measurements)
Strange drop of CCD
at the very beginning
  of the Dec 2008
      irradiation 
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Tests at Zeuthen 2009:
CCD vs time 

All data

First 500 min data taking:

After 10 MGy

Same steady state CCD?
Short living traps?
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Beam Pumping Test

Beam

Collimator

Faraday Cup

90Sr Source

Linear Drive
Trigger Box

Detector+Preamp Box

Collimator
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Beam pumping test at 5 MGy

 Pumping dose rate ~50 kGy/hour (~50 x ILC)
 Example of spectra evolution: +/-200 V, 0.1 Hz:

t =
 2

0 
se

c

t =
 1

00
 s

ec

t =
 4

40
 s

ec

Strong spectrum asymmetry, which
depends on time left from the beam-off
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Beam pumping test at 10 MGy

 Examples of CCD time evolution:

10 MGy5 MGy

Data available:HV frequency: from 0.1 to 3 Hz + constant polarity
HV value: from 50 V to 300 V, in total 19 sets

Clear indication to the presence of fast decaying traps
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Uniformly distributed free traps case

Charge absorption probability for the thin layer:

In case when free traps are 
uniformly distributed:

Charge collection efficiency 
could be calculated analytically.
For the detector of thickness D:

CCE 0=
2
aD

⋅1−1−exp −aD 

aD 

P l=1−exp−Rtrap
2
⋅
l
l 0
⋅
n free
N =1−e−al a=

Rtrap
2

l 0
⋅
n free
N

CCE vs detector thickness
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Summary

 The  performance of  scCVD Diamond sensor was studied as 
a function of absorbed dose up to 10 MGy.

 Strong polarization effect is observed in the radiation 
damaged scCVD Diamond detector.

 It was shown that the polarization significantly decreases 
the detector charge collection efficiency in addition to   
pure trapping/detrapping mechanism.

 A simple model is developed in order to understand and 
describe observed phenomena.

 Method of routinely switching HV polarity is proposed to 
suppress polarization. Large improvement of CCE is observed 
experimentally.

 Data obtained show the way for better understanding of 
solid state detectors radiation hardness problem.
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Thank you...

Special thanks to GSI team for
    CVD Diamond sensors and
TU-Darmstadt for the test beam
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Sapphire – preliminary results

Ratio between
Detector current
and Faraday Cup 
current was used
as a measure of
sensor efficiency

~30% of initial
efficiency after
12 MGy – not bad!

Po
lar

iza
tio

n

    
ef

fe
ct?

Beam interruptions
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Irradiated single crystal CVD Diamond

 Regular change of HV polarity to avoid 
polarization: almost uniform E-field

rate

rate

cross-check

-HV 200 V

±HV 0.1 Hz
      200 V

More experimental studies needed 

Filled traps

E-field

 
n

ntraps
 = k Dose + n

0
 ?

-HV 100 V
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Uniformly (partly) filled traps

Allowed reduction of the flux keeping    efficiency:

Alternating HV polarity +
 + stable particle flux =
= XXL radiation hardness  

Charge collection efficiency 
could be kept at high level
for a very long time if particle
flux is maintained stable.

; t – detector operation time

  Leakage current ???
Crystal destruction ???

r=


nom

=
1
Rnom
q ⋅

Q
T 0⋅Qabsorb

⋅t− n free


Rtrap 


