



# Recent studies of Diamond detectors radiation hardness

Sergej Schuwalow, DESY Zeuthen



1

Hamburg University seminar

31.03.2009

- > Why do we need Diamond Detector @ ILC?
- BeamCal challenge
- Diamond properties
- Experimental infrastructure
- Charge collection
  - Ideal crystal, Radiation damaged crystal
- Polarization creation, model, predictions
- Some selected experimental studies:
  - CCD vs Dose, CCD time dependence
  - Future plans
- Summary

## The International Linear Collider İι

~30km



31.03.2009



#### 31.03.2009

## **BeamCal Design**



Compact em calorimeter with sandwich structure:
30 layers of 1 X<sub>0</sub>
3.5mm W and 0.3mm sensor

\* Angular coverage from ~5mrad to ~45 mrad

★ Moliére radius R<sub>M</sub> ≈ 1cm

\* Segmentation between 0.5 and 0.8 x R<sub>M</sub>

W absorber layers

Radiation hard sensors with thin readout planes

Space for readout electronics

31.03.2009



# The Challenges for BeamCal



**Radiation Hard Sensors** 

31.03.2009

6

D<sub>rate</sub> (MGy/a)

10

10-1

10<sup>-2</sup>

10<sup>-3</sup>

# **Diamond properties**

- $\blacktriangleright$  Density 3.52 g cm<sup>-3</sup>
- Dielectric constant 5.7
- Breakdown field 10<sup>7</sup> V cm<sup>-1</sup>
- > Resistivity  $> 10^{11} \Omega$  cm
- ➢ Band Gap 5.5 eV
- Electron mobility 1800 (4500) cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>
- ➢ Hole mobility 1200 (3800) cm² V⁻¹ s⁻¹
- Energy to create e-h pair 13.1 eV
- $\blacktriangleright$  Average signal created 36 e  $\mu m^{-1}$

\* High-purity single crystal CVD



## Sensors

## sc CVD diamond from Element 6 (provided by GSI, Darmstadt) Thickness 326 μm, active area 3mm in diameter





2 sensors, one is irradiated up to 5 MGy dose at the 10 MeV electron beam in 2007 and then up to 10 MGy in Dec 2008

# MIP Response of scCVD Diamond



31.03.2009

# High Dose Irradiation

#### Superconducting DArmstadt LINear ACcelerator Technical University of Darmstadt

IIL



- Irradiation up to ~12 MGy:
   8.5 8.6 MeV electrons and beam currents from 10 to 250 nA
   (connectanding to 60 to 1800 kGy/h)
- (corresponding to 60 to 1800 kGy/h.)
  Keeping the sensor under bias (100 V) permanently.
- This is a much higher dose rate compared to the application at the ILC (~1 kGy/h)

(1 MGy = 100 Mrad is deposited by about 4 x 10<sup>15</sup> e<sup>-/</sup>cm<sup>2</sup>) 31.03.2009 Radiation Hard Sensors



# High dose irradiation at TU-Darmstadt



#### 31.03.2009

# 'Ideal' crystal charge collection

## > Charge collection efficiency depends on E



#### 31.03.2009

# Radiation damaged crystal

- Radiation causes local damages of the lattice structure.
- These local damages (traps) are able to capture free charge carriers and release them after some time
- Assumptions:
- Trap density is uniform (bulk radiation damage)
- Traps are created independently (linearity vs dose)



31.03.2009

#### Irradiation of single crystal CVD Diamond

After absorbing 5 MGy: CVD diamonds still operational. CCD (from I<sub>sens</sub>) vs dose ccD [µm] 400 350 CCD (from source setup) 300 250 200 150 100 50 00 1000 3000 5000 2000 4000 dose [kGy]



So14 04

Very low leakage currents (~pA) after the irradiation.

Decrease of the charge collection distance with the dose.

Generation of trapping centers due to irradiation. Traps release?

116

# Pure trapping/detrapping mechanism is contradictory: expected CCD<sub>I detector</sub> > CCD<sub>MIP</sub> (not the case) too high "missing charge" n<sub>Traps</sub> ~ n<sub>Atoms</sub> at 5 MGy?

- too high cross section for defects creation  $dN_{traps}/dt > N_{eh}$ 

CCD (from  $I_{sens}$ ) vs dose



Example: Beam<sub>det</sub> - 5x10<sup>10</sup> e/sec 1.2x10<sup>4</sup> eh pairs/particle Irradiation time 3.6x10<sup>4</sup> sec Detector volume 2.3x10<sup>-3</sup> cm<sup>3</sup> Pairs produced ~10<sup>22</sup> cm<sup>-3</sup> Atom density 1.77x10<sup>23</sup> cm<sup>-3</sup>

**Recombination!** 

#### 31.03.2009

Labtest of damaged single crystal CVD Diamond

#### After absorbing 5 MGy:



Measurements at <sup>90</sup>Sr-source setup:

After switching HV on signal drops with time

Switching HV off after signal stabilization: strong signal of opposite polarity is observed

Signal vs time behavior depends on the MIPs rate

Dynamic polarization !

#### 31.03.2009

Model of sCVD Diamond Polarization

#### **Polarization Model**

Radiation damage – uniformly produced traps MIP signal – uniformly produced e–h pairs +Electric field → NONUNIFORM space charge Change of the electric field e–h Recombination if the field is low Release of trapped charges (decay time) Change of the space charge distribution +

#### Steady state POLARIZATION

Dependent on trap density, applied voltage and signal rate



Sergej Schuwalow DESY Zeuthen

31.03.2009

#### Model of sCVD Diamond Polarization - 1



31.03.2009

Model of sCVD Diamond Polarization - 2



31.03.2009

IL

Model of sCVD Diamond Polarization - 3



31.03.2009

İİĻ

Polarization model prediction:

Detector signal shape is changing with the polarization development:

Radiation damaged crystal under <sup>90</sup>Sr source



# <sup>90</sup>Sr setup: CCD time dependence

## Diamond sCVD sensor after 5 MGy



31.03.2009

# CCD vs time dependence, low rate



31.03.2009

# CCD vs time dependence, high rate

**5 MGy** So14-04 Diamond Sample (5 MGy)



"High rate" data h<sub>Source</sub> ~ 20 mm CCD dependence on HV in case of switching polarity is NOT yet in the model. What is E-field dependent: trap release time, or/and capture probability?

Frenkel effect?

31.03.2009

# So14-04 scCVDD additional irradiation Dec 2008



No annealing! (1.5 years, a lot of tests with <sup>90</sup>Sr source, UV-light, several TSC measurements) Strange drop of CCD at the very beginning of the Dec 2008 irradiation

31.03.2009



31.03.2009

# **Beam Pumping Test**



ir



31.03.2009

Radiation Hard Sensors

28

#### > Examples of CCD time evolution:



Data available:HV frequency: from 0.1 to 3 Hz + constant polarity HV value: from 50 V to 300 V, in total 19 sets

Clear indication to the presence of fast decaying traps

31.03.2009

IIL

# Uniformly distributed free traps case

CCE vs detector thickness

Charge absorption probability for the thin layer:

$$P_{l} = 1 - \exp\left(-\pi R_{trap}^{2} \cdot \frac{l}{l_{0}} \cdot \frac{n_{free}}{N}\right) = 1 - e^{-a}$$



In case when free traps are uniformly distributed:

 $a = \frac{\pi R_{trap}^2}{l_0} \cdot \frac{n_{free}}{N}$ 

Charge collection efficiency could be calculated analytically. For the detector of thickness D:

$$CCE_0 = \frac{2}{aD} \cdot \left(1 - \frac{1 - \exp(-aD)}{aD}\right)$$



- The performance of scCVD Diamond sensor was studied as a function of absorbed dose up to 10 MGy.
- Strong polarization effect is observed in the radiation damaged scCVD Diamond detector.
- It was shown that the polarization significantly decreases the detector charge collection efficiency in addition to pure trapping/detrapping mechanism.
- A simple model is developed in order to understand and describe observed phenomena.
- Method of routinely switching HV polarity is proposed to suppress polarization. Large improvement of CCE is observed experimentally.
- Data obtained show the way for better understanding of solid state detectors radiation hardness problem.



# Special thanks to GSI team for CVD Diamond sensors and TU-Darmstadt for the test beam

# Sapphire - preliminary results



Ratio between Detector current and Faraday Cup current was used as a measure of sensor efficiency

~30% of initial efficiency after 12 MGy – not bad!

31.03.2009

#### Irradiated single crystal CVD Diamond



IIL

# Uniformly (partly) filled traps

Allowed reduction of the flux keeping  $\varepsilon$  efficiency:



İİĹ

31.03.2009



Alternating HV polarity + + stable particle flux = = XXL radiation hardness

Charge collection efficiency could be kept at high level for a very long time if particle flux is maintained stable.

Leakage current ??? Crystal destruction ???

**Radiation Hard Sensors**