TESLA R&D: LCAL/LAT

Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna

Achim Stahl DESY Zeuthen

A Standard e⁺e⁻ Detector

Two Challenges

Excellent Performance

momentum resolution: $\delta p/p = 5 \ 10^{-5}$

impact parameter: $\delta IP < 5 \ \mu m$

photon energy: $\delta E/E \sim 0.1 / \sqrt{E} + 0.01$

jet energy: δE/E ~ 0.3 / √E

Beam Strahlung

huge background created by beam-beam interaction

affects area very close to the beam pipe

Proposal: 2-Year R&D Program

Instrumentation of the very forward region

LumCal

Calorimeter for Precision luminosity measurement BeamCal Measurement of Beam-Strahlung and Veto of Electrons

Background-Info: Beam-Strahlung

10 ... 20 TeV per BX per Side
typ. 10000 electrons/positrons
mean energy of 1 GeV

The very forward region:

Design from the TDR

The very forward region: The Tasks

Precision Luminosity

Veto: High Energetic Electrons

Masking
Precision Lumi
Electron Veto
2-Photon-Tags

Veto: 100 GeV e-Beam Energy: 250 GeV False Vetos: 1% Physics 2% Fakes

Fast Beam Diagnosis

LumiCal (LAT) Technology:

Si-W Sandwich Calorimeter (as ECal)

BeamCal (LCal) Technologies:

Requirements:
> Small Molière Radius
> High Granularity (transverse)
> Longitudinal Segmentation
> Radiation Hardness (< 10 MGy/year)

BeamCal Potential Technologies:

Tungsten sandwich with passive gas gaps Xtal calorimeter with thin phototriodes

Proposal: 2-Year R&D Program

Instrumentation of the very forward region

LumCal Design & Simulation Exp. Limitations Physics Needs BeamCal Lab Tests & Simulation Identify most suitable technology