

1000 m 20 m ad IR E-collim: DESY-PRC2006 tune-up dump 2 mrad IR BSY **Ronen Ingbir**

Tel-Aviv University

• Integrated **luminosity** measurement – High precision

```
(e^+e^- \rightarrow w^+w^- \sim 10^{6 \text{ events/year}}, e^+e^- \rightarrow f^+f^- \sim 10^{6 \text{ events/year}}, \text{ GigaZ} \sim 10^{9 \text{ events/year}})
```

• Beam diagnostics with intra train luminosity feedback and optimization capabilities

The Collaboration plays a key role in the Machine Detector Interface

recision design

Challenges

Fast, simple and reliable machine monitoring

Detector performance

- High granularity and multi-channel (10⁴)
- High precision alignment
- High occupancy machine and physics backgrounds (efficient selection algorithms)
- High radiation environment (radiation hard sensors/electronics)
- Readout of every bunch (fast electronics, fast analyzes, high volume storage) Beamstrahlung pairs per bunch crossing hitting BeamCal

Beam diagnostics : BS Pairs

Observables (examples):

- total energy
- first radial moment
- left/right, up/down,
- forward/backward asymmetries

Quantity	Nominal Value	Precision		
		PRC04	PRC06	
		Head-on (TESLA, different nom. value)	2mrad	20mrad
σχ	655 nm	1.2	3.1	2.9
σy	5.7 nm	0.1	0.3	0.2
σΖ	300 μm	4.2	4.8	8.5

Electron detection - different accelerator parameters

Number of SUSY events ~ 20

Collaboration High precision design
--

DESY-PRC2006

364

396

321

349

Low P

Nominal, 20mrad

Optimization of cell size

X-angle & magnetic field

Distribution of BeamStrahlung pairs

Anti DID

20 mrad, DID

20 mrad, anti DID

BeamCal Present Understanding

Sensors options:

Silicon,

Diamond,

GaAs

We consider a graphite layer in front of BeamCal to reduce backscattering to the inner detector

scheme	$R_{in} \ [mm]$	$R_{out} \ [mm]$	blind area
head-on	15	100	no
$2\mathrm{mrad}$	20	100	no
$14\mathrm{mrad}$	15/20	165	40°
$20\mathrm{mrad}$	15/20	165	30°

Mechanics and Position

XYZ displacement mesurement

Counting Bhabha events

Requires also precision on the theoretical cross-section Working with Zeuthen, Cracow, Katowice theory groups (two loop calculation)

Polarised Bhabha

precision design

Four-lepton processes

 Simulation of $e^+e^- \rightarrow e^+e^-|^+|^-$ ($l = e, \mu, \tau$): WHIZARD Bhabha scattering: BHLUMI Event Selection: back to back

DESY-PRC2006

Energy [Gev]

Background

LUMICAL

BEAMCAL

Collaboration High precision design

Optimization (Geant)

LumiCal Present Understanding

Maximum peak shower

- \bigcirc 10 cylinders (θ)
- **60** cylinders (θ)

Parameter		Pad Performance	Strip Performance
Energ	y resolution	25% (<i>\sqrt{GeV}</i>)	25% (\sqrt{GeV})
θ	resolution	3.5 * 10 ⁻⁵ rad	2.1 * 10 ⁻⁵ rad
ϕ	resolution	10 ⁻² rad	10 ⁻³ rad
$\Delta \ heta$		~ 1.5 * 10 ⁻⁶ rad	~2.1* 10 ⁻⁷ rad
	Electronics channels	25,200	3720 (with bonding sectors) 13,320 (without bonding)

Every other ring:

New simulations results

Strip design - signal digitization

		analog	8-bit ADC
σ(θ)	[rad]	(3.11±0.01)×10 ⁻⁵	(3.07±0.01)×10 ⁻⁵
Δθ/θ		(2.1±0.3)×10⁻⁵	(2.3±0.3)×10⁻⁵
σ(φ)	[rad]	(1.4±0.1)×10 ⁻³	(1.4±0.1)×10 ⁻³

Digital Calorimeter

200 concentric rings 720 radial strips 14400 channels in each plane

Promising performance results

Needs further optimization

Beamstrahlung pair background

DESY-PRC2006

FallCollaboration High precision design

Diamond sensors

Diamond samples (pCVD):

- Freiburg (FAP)
- GPI (Moscow)
- Element6 (De Beers)

aboration

Some sensors show microcracks (and leakage) The CCDs are between 0 and 150 μ m Some are stable under irradiation, other not.

	Silicon	Diamond
Resistivity, W×cm	2.3×10⁵	10 ¹³ - 10 ¹⁶
Breakdown field, V/cm	3×10⁵	10 ⁷
Dielectric constant	11.9	5.7

The search for a homogeneous reproducible sensor

The search for a homogeneous reproducible sensor

Linearity over large dynamic rage

CERN PS Hadron beam – 3,5 GeV. fast extraction ~10⁵-10⁷ / ~10ns (Wide range intensities)

Facing the challenges

- 5 bunch trains per second (5 Hz)
- 3000 bunches within one train
- One bunch every 300ns, 150ns possible
- Each bunch to be registered
- High dynamic range (better 1:10k)
- 8→12 bit ADC
- Data per train ~1 Gb (transmission during train ~1 Tb/s, during break ~3 Gb/s)
- Radiation hardness to be considered
- Compact detectors: low power little space for multi-channel electronics

Signal transmission

Digital Transmission LVDS link

Parallel conversion – BeamCal

ADC in each channel – expensive, needs 'Sample and Hold' and consuming space on chip

laboration

Multiplexed ADC - LumiCal

One ADC for a group of channels – cheaper, needs 'Sample and Hold', MUX and faster ADC

- ADC to be included onboard (digital transmission)
- Optical fiber transmission best rates
- Transmission between trains only for LumiCal
- BeamCal readout simultaneously with bunches
- Strategy: Investigation of known systems, since we are limited with manpower / resources.
- Investigation of different types of preamps
- Feasibility studies of digitization

Present Understanding & Summary

Since last PRC (1.5 years ago).....

- Close working relations between the groups
- Most simulation milestones were addressed (ahead of schedule)
- Hardware milestones seems feasible following original schedule
- 3 FCAL collaboration meeting:

Zeuthen, Tel-Aviv, Cracow (~20 talks were given in each meeting)

• ~40 talks were given in big international meetings:

(LCWS, ECFA, Snowmass, MDI ...)

• 1 Ph.D. thesis, 2 M.Sc. thesis

rision design

People signing the 2006 PRC

Cracow FCAL meeting, Feb 2006

