INVESTIGATION OF DIAMOND SAMPLES UNDER HIGH DOSES OF ELECTROMAGNETIC IRRADIATION (at S-DALINAC)

Wolfgang Lange, DESY Zeuthen

OUTLINE OF THIS TALK

- 1. Motivation
- 2. Test Beam @ S-DALINAC
- 3. Measurements
 - 1. Layout and method
 - 2. Simulations, geometry
 - 3. Samples
 - 4. Analysis
- 4. Results (preliminary)
- 5. Conclusions

MOTIVATION FOR RADHARD SENSORS

MOTIVATION - ENERGIES AND DOSES

Simulated situation in BeamCal:

Energy spectrum of particles depositing energy in the sensors

- Spectrum given for 2X₀:
- similar for all planes
- peaks @ 10 MeV
- ---> use 10 MeV electrons (secondaries...) ---> doses of > 1 MGy

TEST BEAM @ S-DALINAC

Superconducting DArmstadt LINear ACcelerator Institut für Kernphysik, TU Darmstadt

Using the injector line of the S-DALINAC:

10 ± 0.015 MeV and possible beam currents from 1nA to 50µA

Wolfgang Lange

3rd NoRDHia Workshop @ 🖪 🗲 👖

LAYOUT AND METHOD (1)

Irradiation ... spectroscopic measurement ...

-> use of 2 setups:

a) beam area

b) "CCD measurement"

LAYOUT AND METHOD (2)

Beam area:

Beam exit window

7

Wolfgang Lange

3rd NoRDHia Workshop @ 🖬 🖬 🏛

LAYOUT AND METHOD (3)

Wolfgang Lange

3rd NoRDHia Workshop @ 🖬 🖬 🏛

SIMULATION AND GEOMETRY (1)

Given:

SETUP TESTRUN 2006

3rd NoRDHia Workshop @ 🖪 🗲 👖

SIMULATION AND GEOMETRY (2)

3rd NoRDHia Workshop @ 🖬 🖬 👖

SIMULATION AND GEOMETRY (3)

SIMULATION AND GEOMETRY (4)

Energy deposition

Spatial distribution

Optimized:

- Distance
- collimator, ratio R

Diamond Energy

8000

7000

역 5000 5000

4000 3000

2000

1000

Wolfgang Lange

hEd Entries 81053 Mean 0.1689 RMS 0.06686

3rd NoRDHia Workshop @ 🖪 🗲 👖

SENSOR SAMPLES

Investigate:

- 2 samples from E6 (pCVD)
 - •1 MGy
 - •5 MGy
- 2 samples from IAF Freiburg

(pCVD)

- •1 MGy •5 MGy
- 2 Si samples (Micron Ltd. UK)
 - both drew high currents after ~50 kGy.

3rd NoRDHia Workshop @ 🖬 🖬 🎽

MEASUREMENTS IN TESTBEAM (1)

- Tuned the beam to currents in the Faraday cup of:
 - 10, 20, 50 and 100 nA
- This corresponds to dose rates of:
 - 59, 118, 295 and 590 kGy/h
- Dose controlled by beam current .
- Error assumed ~ 10%

MEASUREMENTS IN TESTBEAM (2)

MEASUREMENTS IN TESTBEAM (3)

MEASUREMENTS IN TESTBEAM (5)

MEASUREMENTS IN TESTBEAM (6)

Si 1505 2 CCD vs dose at 50V

Thickness = 280 µm Initial CCD = 280 µm (100% collection efficiency)

CONCLUSIONS

- S-DALINAC is well suitable facility up to 10 MeV:
 - wide range of intensities possible (1 nA to 50 μ A)
 - good experimental support, helpful crew
- More measurements planned
- Completely different behaviour of different samples:
 - nearly stable vs. dose, recovers behaviour (E6_B2)
 - degrading vs. (much higher: ~ 4*) dose, recovers with lower CCD (E6_4p)
 - improves CCD vs. dose, stays with larger CCD (DESY-8, FAP-5, both Fraunhofer)
- Further investigations needed
- Standard silicon stable only until ~ 50 kGy, damage after irradiation permanent

