Diamond Detector Developments at DESY

and

Measurements on homoepitaxial sCVD Diamond

Christian Grah - DESY Zeuthen

2nd NoRHDia Workshop at GSI Thursday, September 01, 2005

Contents

Diamond Activities at DESY - Motivation
Activities - investigation of sCVD diamond from Augsburg (->Schreck et. al.)
I-V characteristics
MIP spectrum
Alpha source spectrum
Summary & outlook

Motivation

R&D for the Forward region of an ILC detector. (LDC based on the TESLA TDR)

Thursday, Sept/01/2005

C.Grah: Diamond Detector developments at DESY

Measure the background (beamstrahlung)

Measure deposition from L* = 4m beamstrahlung pairs => determine beam ECAL HCAL parameters. 300 Fast luminosity VTX-Elec measurement from Lumi Elec deposited energy. Cal Elec Valve Measure single high Beam Cal energetic IP electrons/photons on Beam QUAD Cal top of that background. Lumi Elec Shield the Inner Cal Elec Detector against VTX-E backscattering. Precise luminosity \succ measurement using LumiCal. LumiCal: 26 < 0 < 82 mrad LumiCal BeamCal $4 < \theta < 28$ mrad BeamCal:

Why Diamond?

> Expect electron/positron hits of 10-20 TeV total energy in this region (14100/s).

>We expect ~ 10MGy/a dose rate in the "hot" region.

Diamonds are the most promising candidate to do the job.

Sensors at Desy Zeuthen so far

E6 - 2 samples

- Fraunhofer IAF, Freiburg ~25 samples
- GPI Moscow 3 samples These are polycrystalline CVD diamonds.

Begin of 2005: 1 homoepitaxial sCVD diamond from Augsburg - "AB1". The following measurements were done on this sample!

More features of AB1: ~ 350µm thick, single crystalline area in the center, small Ti/Pt/Au electrode of 2.5mm diameter on both sides.

Examples of Investigated Diamond

linearity over a wide range (testbeam measurement, 5GeV hadrons)

uniform behavior of signal size vs dose

Current-Voltage Characteristics

AB 1 inilRR 2nd l, nA AB 1 iniIRR normHV N2 3 0.04 AB 1 iniIRR oppHV N2 3 0.02 0 -0.02-0.04-600 -400-200 400 600 200 0 HV, V > Setup for measuring the current O(10⁻¹² A) as a function of the applied voltage (up to 500 V). (good shielding, Pico Ampere meter, Nitrogen flow)

>Hysteresis (standard behavior for pCVD) and polarity dependence.

➢ Diode-like behavior.

Current vs. Time

Thursday, Sept/01/2005 C.Grah: Diamond Detector developments at DESY

Spectra of MIPs: Setup

β-particles from the ⁹⁰Sr are supposed to be a Minimum Ionizing Particle if they generate a signal in the scintillator (trigger).
Low signal rate of AB1 due to small electrode.

Typical Result

Analysis of the Data

CCD as a function of the applied E-field

Measured CCD of up to 130 µm.

Again: difference between the two polarities.

CCD as a function of time after changing the E-field

AB1: CCD vs time after HV change, 350 µm thickness, Sr90

Time behavior of the signal's MPV is quite stable for positive polarity. Decrease of CCD with time for negative polarity.

Alpha measurements

Self triggering mode. Sensitive only to a small surface region (some µm). By using a structured collimator a 'scan' over the sensor was done.

Result from Alpha measurement

Only in one position a clear second peak was observed. In the other positions no second peak could be identified.

bottom side; norm 200V; big slot; test1

Summary

For the BeamCal of the ILC a W:CVD sandwich diamond calorimeter is under investigation. > Also studied sCVD Diamond from Augsburg. > Observed diode-like IV. Observed a 2-peak structure in the MIP spectra and in the alpha measurements. > Observed an inhomogeneity of the diamond (surface/bulk?).

Outlook

> Single crystals: > Looking forward to test more samples. > Polycrystalline diamonds: > Will extent our irradiation studies to highest doses. > Gathering ideas for readout/mechanics to develop a full detector architecture and a detector prototype.