Study of Readout Electronics for LumiCal detector

W. Dabrowski, M. Idzik, K. Świentek, P. Wiacek & student(s)

AGH Kraków

Outline

- LumiCal detector overview
- Specifications & implications for front-end
- Noise considerations theory
- Front-end design & preliminary simulations
- Overall readout architecture
- Summary & Schedule

General detector architecture

LumiCal architecture

- LumiCal ⇔ of 30 discs of silicon detectors (300 μm)
 - Disc ⇔ 24 azimuthal (15 degree) sectors
 - Sector \Leftrightarrow (R_{in}=6cm, R_{out}=35cm) built of ~100 radial pads

Specifications for front-end

- Signal: from 4fC (muons in test mode) up to ~6pC (physics mode)
- Occupancy: up to ~20% (beam-strahlung), below 1% (bhabha)
- Detectors:
 - DC-coupled 300 μm Si pads
 - C_{det} range: 20pF-120pF plus fanout (~1pF/cm ?)
 - Leakage current ?
- Inter bunch time: 330ns
- Power limitations ?

Front-end implications

Large C_{det} range
Charge sensitive
configuration

Noise considerations - theory

- Input stage noise (ENC) simulations with EKV model
- Assumptions: AMS 0.35 μ m, $C_{det} = 100$ pF, I = 2.5 mA, $I_{st} = 100$ order shaping, $I_{peak} = 50$ ns, $I_{f} = 500$ k Ω , $I_{leak} = 10$ nA

- Thermal noise dominant
- ⇒ S/N=10 possible for MIP (24000el)
 - $W_{in} > 2000 \mu m$
 - I > 2mA

Front-end design

- Folded cascode amplifier
 - I~2.5mA
 - PMOS input, ~5000/0.4μm
 - Rf~500k
- Physics mode:
 - Cf= $\overline{6-10pF}$, $\overline{k_{PZC}}=1$
- Test mode:
 - Cf~0.5pF, $k_{P7C} = 10-20$
- Shaper:
 - Ish~0.6mA
 - 1^{st} order, $T_{peak} = 50$ ns
 - variable gain

Preliminary simulations

Noise performance

- Test mode:
 - S/N~10 (ENC~0.4 fC)
- **⇒** Physics mode:
 - dynamic range > 11 bit

Linearity

Alternative front-end

Cf Charge Amp.

Switched integrator configuration

Simulations in progress...

Readout solutions to consider

Front-end Derandomizing ADC Memory

- Is there an advantage from having a derandomizing buffer in each channel?
- ADC inside the chip or external ?
- Data stored in local memory during the train or sent immediately?
- Which data protocol ?

Derandomization buffer

- Advantages:
 - Low frequency ADC/channel can be used OR high frequency ADC multiplexed to number of channels
 - Lower averaged power per channel
- Disadvantages:
 - More complicated design
 - More man power
 - Possible buffer overflow

Analog to digital converter

	External (commercial)	Internal (custom)
Need to be design	No	Yes
Space on PCB	a lot	No
Control	complicated	easier
Price & power	comparable	

Texas Ins. ADS 5277

10bit, 0.9W 65MSPS, 8 chan.

\$32 = 25.5 €

Tot. ≈ 20 k €

10bit, 55mW 40MSPS, 1 chan. 2.6 mm²

Tot.(P&P) ≈ 25 k €

I.Mehr and L.Singer ISSC vol. 35, pp.318, 2000

Memory and data transmission

	Test mode	Bhabha
Occupancy	5.5%	<0.2%
Direct transmission*	7.88 Gb/s	5.22 Gb/s
InterTrain transmission*	23.6 Mb/s	15.62 Mb/s
Data per Train*	7.1 Mb	4.7 Mb

^{*}Calculations done for half-disc unit

Both solutions: Direct and InterTrain transmission seem feasible
We should watch commercial solutions!

Summary & Schedule

- → The work on LumiCal Readout Electronics has just started (~1 month)
- ➡ First prototypes of Front-end (and maybe something else) will be submitted in ~2-3 months
- More detailed study on Readout architecture needed (compatibility with mechanical and cooling design!)

Charge deposition

Front-end electronics

