What Precision do we need on the Luminosity Measurement?

Klaus Mönig

Introduction

Forward region detectors serve two purposes:

- Hermeticity: Increase acceptance down to lowest possible angles. Mainly relevant for vetoing $\gamma\gamma$ induced $e^+e^- \rightarrow e^+e^-X$ events. Beamcal and Lumical are important \rightarrow Philip Bambade's talk
- Precision luminosity measurement: Bhabha scattering in the forward region. Extremely good control of systematics required. Only Lumical is relevant.

Luminosity determination

Luminosity precision is determined by statistics of interesting processes

- $e^+e^- \rightarrow W^+W^-$: ~ 10 pb at $\sqrt{s} = 340$ GeV scaling with 1/s $\rightarrow \mathcal{O}(10^6)$ events $\rightarrow need \ 10^{-3}$ precision
- $e^+e^- \rightarrow f\bar{f}: \sim 5 \text{ pb at } \sqrt{s} = 340 \text{ GeV scaling with 1/s}$ $\rightarrow \mathcal{O}(10^6) \text{ events} \rightarrow \text{need } 10^{-3} \text{ precision}$
- GigaZ: aim for 10^9 hadronic Z decays. Relevant physics quantities (except N_{ν}) need also leptonic decays (10% of hadronic decays) med 10^{-4} precision

Reached at LEP:

- cross section of lumi-monitor > 60 nb (25mrad < θ < 60mrad) (\rightarrow cross section also at ILC no problem)
- experimental error on \mathcal{L} : $\Delta \mathcal{L} = 0.03\%$
- theoretical error on \mathcal{L} : $\Delta \mathcal{L} = 0.05\% \rightarrow \text{being worked on}$

$\mathrm{e^+e^-} \rightarrow \mathrm{W^+W^-}$

W-pair production from ν t-channel and Z, γ s-channel exchange

Cross section strongly forward peaked

However forward peak independent on anomalous couplings

Normalisation in TGC fits can be obtained internally

Luminosity measurement only interesting for anomalous $e\nu W$ couplings

5

$e^+e^- \to f \overline{f}$

 $e^+e^- \rightarrow f\bar{f}$ is sensitive to physics at very high scales (compositness, Z', extra space dimensions)

Sensitivity is mainly via interference with Standard Model amplitude $\Longrightarrow \propto 1/M^2$

All observables (cross section, left-right asymmetry, forward-backward asymmetry) are important

Systematic errors (e.g. luminosity) effect results significantly

Z' limits in different models

$L=1ab^{-1} P_{-}=0.8 P_{+}=0.6$

GigaZ

GigaZ = 10^9 Z at $\sqrt{s} \approx m_Z$

Main aim: $\sin^2 \theta_{eff}^l$ determination \rightarrow no \mathcal{L} dependence

Important additional information from "lineshape" parameters $\Gamma_{\rm Z},\,\sigma_0^{\rm had},\,R_l$

Interesting information is obtained from combination of these parameters:

$$\sigma_0^{\text{had}} = \frac{12\pi \Gamma_e \Gamma_{\text{had}}}{m_Z} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$$
$$R_l = \frac{\Gamma_{\text{had}}}{\Gamma_l}$$

 \Rightarrow need all parameters with about the same accuracy

- Γ_Z : difficult to estimate (beam energy, beamstrahlung, beamspread) but $\Delta\Gamma_Z = 1 \text{ MeV} (\Delta\Gamma_Z/\Gamma_Z = 4 \cdot 10^{-4})$ seems realistic
- $R_l: \Delta R_l/R_l = 10^{-4}$ from lepton statistics
- \rightarrow need lumi error (exp+theo) $\Delta \mathcal{L}/\mathcal{L} \sim 2 \cdot 10^{-4}$

- small axis: $\sin^2 \theta_{eff}^l$ \Rightarrow no luminosity dependence
- \sim large axis: $m_{\rm W}$ if $\varepsilon_2 = U = SM$, otherwise Γ_l
 - $\Rightarrow \text{luminosity precision essential} \\ \text{Important in interpretations outside SM!}$

Conclusions

At ILC a precise luminosity determination is needed

- $\bullet \sim 0.1\%$ at the high energy
- 10^{-4} should be aimed for at GigaZ