

The Forward Region of the ILC detector

Aura Rosca, West University Timisoara IPRD08, Siena, 1 - 4 October 2008

- **Accelerator**
- **ILC detector(s)**
- **Very forward region:** design and challenges
- **Summary**

- **Argonne, BNL, Vinca Inst., Univ. of Colorado, Cracow UST,** Cracow INP, JINR, Royal Holloway, NCPHEP, Prague (AS), LAL Orsay, Tuhoku Univ., Tel Aviv Univ., West Univ. Timisoara, IFIN-HH, Yale Univ., DESY-Zeuthen
- **Associated: Stanford Univ., IKP Dresden**
	- Guests from CERN.

Questions in Particle Physics

Despite the spectacular success of the Standard Model, many questions remain:

- Pattern of particle masses; why is the top so heavy?
- Pattern of quark mixing? Lepton mixing?
- Origin of CP violation? Baryogenesis?
- Why 3 generations?
- Unification?
- Hierarchy
	- Why is the electroweak scale << Planck scale?
- Dark matter?
- Dark energy?
- Quantum gravity?

The Next Big Accelerator

- **For precision measurements, want an ete**collider to complement the existing hadron machines.
- **There are strong theoretical reasons for** wanting to achieve ~1TeV in energy.
	- Synchrotron radiation effect too large, we cannot build such a machine as a circular accelerator

International Linear Collider

First stage: 90-500 GeV Second stage: up to 1 TeV **Luminosity:** 500 fb-1/4 years, **1 ab⁻¹ at 1 TeV** \longrightarrow **L ~ 2 x10³⁴ cm⁻²s⁻¹** 80% e⁻, 50% e⁺ (optional) **Polarization: Beam energy** uncertainty: $< 10^{-3}$ **Options:** γ, γγ, e⁻e⁻, GigaZ -31 Km Not to Scale e-/e+ DR ~6.7 Km **RTML RTML** 30m radius 30m radiu - extractic **Jose India UNDULATO** e-Linac e+ Linac Keep-alive
Stand Alon

 4 October 2000 $700a$, Physics Dep. UVT 5

 -1.33 Km

11.3 Km + ~1.25 Km

Schematic Layout of the 500 GeV Machine

 -4.45 Km

 -1.33 Km

11.3 Km

Collaboration
precision design

Detector Requirements

- Desire to fully reconstruct hadronic final states. **• Ability to tag heavy quarks.**
- Excellent missing energy/mass sensitivity Require:
	- Exceptional momentum resolution, 1/10 x LEP
		- **Large volume TPC or low mass Si µ-strip tracker**
	- Excellent vertexing capabilities 1/3 x SLD, 1/5-10 x LEP
		- **5-layers pixel Vertex Detector**
	- Particle flow Calorimetry
		- Imaging, non-compensating sampling calorimeter
	- Hermiticity > 5 mrad
		- **Minimal supports, on-detector readout.**

Very Forward Region

~5mrad

GamCa

Lul'_{nrad}

~90mrad

LumiCal Precise measurement of the integrated luminosity (∆L/L ~ 10-4) Provide 2-photon veto

ad
BeamCal Provide 2-photon veto Serve the beam diagnostics using beamstrahlung e⁺e- pairs

Serve the beam diagnostics using
beamstrahlung photons

IP

Collaboration
precision design

Collaboration
precision design

e -

Luminosity measurement

e

 Precise luminosity measurement Gauge $\mathsf{process: e^+e^-} \to \mathsf{e^+e^-}(\gamma)$

 $L = N / \sigma$

From

theory

Count Bhabha events

e

e +

Goal : precision < $10^{-3} (10^{-4})$ **Inner acceptance radius : < 10 µm** Distance between Cals. : < 600 µm Radial beam position $:$ < 1 mm

Collaboration
precision design

Luminosity Calorimeter

Geometry

- Tungsten thickness = 3.5 mm
- Silicon thickness = 0.3 mm
- R_{min} = 80 mm
- $R_{\text{max}} = 195 \text{ mm}$

Segmentation

- 30 layers, 48 radial divisions;
- Angular coverage from ~ 50 mrad to \sim 90 mrad, outside the reach of beamstrahlung pairs;
	- z position = 2270 mm.

Si sensors placement accurate to several µm.

Beam Diagnostics

Beamstrahlung is a new phenomenon at the ILC (nm beam sizes)

- Bunches are squeezed when crossing (pinch effect)
- Photon radiation (at very small angles)
- Part of the photons converts to e +e - pairs (deflected to larger angles)
- **A measurement of photons and pair** energy allows a bunch-to-bunch luminosity estimate

Important for beam tuning.

 Dose absorbed by the sensors: up to 10 MGy/year Radiation hard sensors

Energy deposition from Beamstrahlung in the innermost calorimeter (BeamCal)

Vertical offset

ЗŸ.

The ratio is \sim to L, feedback for beam tuning.

Collaboration ecision design

Collaboration ecision design

 Electron veto capability is required from physics down to small polar angles to suppress background in particle searches with missing energy signature (hermiticity)

– e.g. Search for SUSY particles at small ∆m

Local deposition from a high energy electron

Beam Calorimeter

 \sim 25 cm

EM calorimeter with sandwich structure:

- 30 layers of 1 X0
	- **3.5mm W and 0.3mm sensor,** 0.2mm readout
- Angular coverage from 5mrad to 48 mrad
- Moliére radius R_M ≈ 1cm
- Segmentation between 0.5 and 0.8 \times R_M

Design: R_{min} = 20 mm \overline{R}_{max} = 150 mm 16 rings of \sim 8 mm 8 sectors Subdivided into cells or pads z position = $3\overline{450}$ mm

~20 cm

ollaboration

Sensor R&D

pCVD diamonds:

- Radiation hardness under investigation (e.g. LHC beam monitors, pixel detectors)
- Advantageous properties like: high mobility, low $\varepsilon_{\rm R}$ =5.7, thermal conductivity.

GaAs:

- Semi-insulating GaAs, doped with Sn and compensated by Cr
- Produced by the Siberian Institute of Technology.
- sCVD diamonds:
	- Available in sizes of mm².

Sensor R&D

Sensor performance as a function of the absorbed dose: electron beam at SDALINAC, 10 MeV, 10-50 nA beam current, 60-300 kGy/hour

Beam exit window

4 October 2008 Aura Rosca, Physics Dep. UVT 15 Collimator $(\overline{\mathsf{I}_{\mathsf{Coll}}})$ Sensor box (I_{Diab} , T_{Dia}, HV) Faraday cup (I_{FC}, T_{FC})

- After absorbing 5 – 6 MGy:

pCVD diamonds are still operational.

.ollaboration recision design

FE Electronics

 Accelerator delivers bunch trains:

- Timing constraints for detectors and readout
- High occupancy in the forward calorimeters – read out after each or a few bunch crossing.
- Fast feedback.
- **Solution for LumiCal:** ASICs in AMS 0.35 µm technology
	- 1 FE ASIC contain 32-64 channels
	- 1 ADC for several channels.

- **32 channels per chip**
- All data is read at 10 bits for physics purposes;
- Sum of all channels is read out after each BX at 8 bits for beam diagnosis (fast feedback), low latency output
- **TSMC CMOS 0.18 µm technology.**

ollaboration recision design

.ollaboration on desien

Summary

- **The FCAL Collaboration develops detectors in the very** forward region of the ILC detector;
- **FCAL detectors will provide precise luminosity** measurement (LumiCal), identification of single high energy electrons to the lowest possible angle relevant for new physics searches (BeamCal), beam diagnostics (BeamCal) and luminosity monitoring (BeamCal, GamCal);
- **LumiCal must be positioned extremely precisely.**
- Radiation hard sensors are essential for BeamCal;
- Electronics for all detectors should be fast (~100 ns), low power, radiation hard.

Transition from mainly design work to sensor and front-end electronics development, system tests and prototyping.