DIAMOND SENSORS: ACTIVITIES @ DESY Zeuthen

Wolfgang Lange

OUTLINE OF THIS TALK

- 1. Motivation People
- 2. First Sensors
- 3. Measurements
 - 1. Static
 - 2. Particle Detection (Source)
 - 3. Particle Detection (Testbeam)
 - 4. Additional Analysis
- 4. Results
- 5. Outlook

MOTIVATION - CALORIMETRY

• Calorimetry in an environment with high radiation doses (TESLA beam cal: Si-W or Diamond-W)

1st NoRDHia Workshop @ 🖪 🗲 🏦

MOTIVATION - BEAM DIAGNOSTICS

• Beam diagnostics in an environment with high radiation doses (accelerator - electron source, dark currents in cavities etc.)

1st NoRDHia Workshop @ 🖪 🗲 👖

PEOPLE

• Currently 2 physicists (part of their time)

1 PhD student (2 soon?)

1 Postdoc (applications now checked)

- Support from 'applying' groups like Photoinjector...
- -> Small group, few people: search for potential collaborators under the headline: Who does apply or produce diamonds?
 - DESY HH, GSI Darmstadt, IAP Freiburg
 - GPI Moscow, JINR Dubna
 - CERN / existing collaborations?
 - Diamond material from E6
- Decision: LEARNING BY DOIING...

FIRST SENSORS

Prototyping of sensors from different manufacturers: IAP, GPI, E6

- IAP: polycrystalline CVD samples with different finishing and treatment
- GPI: different CVD polycrystalline samples
- E6: 2 CVD samples bought

--> INVESTIGATION OF PROPERTIES

Sensors: up to 1cm^2 , $\leq 500 \mu \text{m}$ thick Frames: take care of leakage currents

Wolfgang Lange

1st NoRDHia Workshop @ 🖪 🗲 👖

STATIC MEASUREMENTS

N2_FAP_2_3

- Three different 'behaviors' observed:
 - symmetric I/V
 - asymmetric I/V
 - asymmetric I/V with 'break through'
- Hysteresis effects for all sensors seen

1st NoRDHia Workshop @ 🖪 🗲 👖

ELECTRONS FROM A B SOURCE

Dose, Gy

1st NoRDHia Workshop @ 🖪 🚍 👖 🛛 8

MEASUREMENTS IN TESTBEAM (1)

- Hadronic beam, 3 & 5 GeV
- 2 'extraction' modes:
 - ~ 1 s slow extraction ~10⁵ 10⁶ continously

~ 10ns fast extraction ~ $10^5 - 10^7$ particles

Wolfgang Lange

MEASUREMENTS IN TESTBEAM (2)

FAP HV = +200 V

Wolfgang Lange

1st NoRDHia Workshop @ 🖪 🚍 💼 🕺 🛛 1

MEASUREMENTS IN TESTBEAM (3)

Sensor (1 cm²) with structure: 4 (2*2) pads, 5 GeV/c (CERN PS T7)

1st NoRDHia Workshop @ 💶 🖬 👖

ADDITIONAL ANALYSIS

We are currently investigating different analysis methods to find out correlations between their results and observed 'detector' properties of the diamonds:

- Raman spectroscopy to identify different carbon modifications (graphite or diamond) and of other elements (N_2) contained
- Infrared spectroscopy
- -> collaboration with Fraunhofer (FAP Freiburg) and local universities

RESULTS

- diamonds from different manufacturers investigated
- different charge collection efficiencies observed:
 GAP < FAP < E6 (CCDs of xxxμm < yyyμm < zzzμm)
- linearity from 1 MIP to about 10⁵ particles within 10 ns (~ 200 pC signal charge)
- samples irradiated with up to 20 Gy
- E6 diamonds perform best others could also be used
- diamonds with a removed substrate side show a more stable and predictable behaviour
- structured sensors seem to perform as expected (only capacitive effects)
- treatment of sensors (irradiation: pumping, heat etc.) needs more understanding and experience ('black art')
- for fast and large signals current readout to be investigated

OUTLOOK

- continued measurements with high ionization (> 10^5 particles)
- investigation of pumping (irradiation) and thermal treatment
- larger sensors
- investigation of different readout methods (charge, current)
- improve analysis to control properties of CVD diamonds
- applications in beam monitoring etc.

