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Introduction

Supersymmetry is a symmetry coupling fermions and bosons

Particle content:
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Particle content:

• All known particles

• SUSY needs two Higgs doublets to give masses to up- and down-type
particle
⇒ 5 Higgs particles → last lecture

• Each fermion has a scalar partner (where left- and right-handed
fermions have to be counted separately)

• Each boson has a fermionic partner:

– Two charginos χ±
1,2 (mχ±

1
< mχ±

2
), partner of W±, H±, mixed

– Four neutralinos χ0
1,2,3,4 (mχ0

1
< ... < mχ0

4
), partner of γ, Z, h,H ,

mixed

– gluinos (g̃), gravitino (G̃)
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However mParticle 6= mPartner ⇒ SUSY is broken

Need mSUSY < 1TeV to solve hierarchy-problem

In general > 100 new free parameters ⇒ have to make some assumptions
how they are correlated

SUSY-breaking parameters in the minimal model (MSSM):

• U(1), SU(2), SU(3) Gaugino-masses M1,2,3

• Higgsino mass-parameter µ

• Scalar-masses mi (or universal m0)

• Sfermion-Higgs couplings Ai, Bi
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R-parity: R = (−1)2S+L+3B

(R = 1 for SM particles, R = −1 for superpartners)

R-parity conservation

• Protects proton decay

• SUSY-particles only in pairs

• Lightest SUSY particle (LSP) is stable

➠ Excellent dark matter candidate (which means LSP must be neutral
and weakly interacting)

R-parity can also be broken

• Very rich phenomenology

• However special care has to be taken to avoid proton decay

Physics at the LHC Lecture 9-5 Klaus Mönig



SUSY decays

With R-parity:

• Write down a SM allowed Feynman graph (Don’t care if kinematically
allowed)

• Replace an even number of lines by Superpartners (An odd number
would violate angular momentum conservation)

• When the new decay is kinematically allowed you have a valid SUSY
decay mode

Without R-parity:

• Usually the R-conserving modes have priority

• R-parity violation requires lepton and/or baryon number violation

• Then decays like ν̃ → e+e− may be allowed
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Why SUSY in a nutshell

• Hierarchy problem:

– SM particles give huge loop-contribution to Higgs mass
(O(1019 GeV)) ➟ unnatural

– SUSY partners exactly cancel the contributions from SM particles (if
SUSY exact)

• SUSY gives a good dark matter candidate

• SUSY can be a new source of CP-violation
➟ may explain the matter/anti-matter asymmetry in the universe

• String theories are the only known way to connect gravity with quantum
mechanics
➟ all string theories are supersymmetric

• SUSY enables unification of forces at a high scale
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Running of coupling constants with and without SUSY
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SUSY breaking schemes

Gravity mediated SUSY breaking

• SUSY is broken at a high scale by gravitational interaction to a hidden
sector

• Gauge coupling unification at the GUT scale (mGUT ∼ 1016 GeV)
possible

➼ Common gaugino mass m1/2 at mGUT

⇒ M1
α1

= M2
α2

= M3
α3

at the weak scale

• Often also universal scalar mass m0 assumed

• Slepton masses:

M 2
ν̃ = m2

0 + 0.77M 2
2 + 0.5m2

Z cos 2β

M 2
ℓ̃L

= m2
0 + 0.77M 2

2 − 0.27m2
Z cos 2β

M 2
ℓ̃R

= m2
0 + 0.22M 2

2 − 0.27m2
Z cos 2β

• Squark masses similar with M2
3 term

• L-R sfermion mixing ∝ mf (Af − µ tan β) only relevant for 3rd gener-
ation
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• Chargino mass matrix

Mχ =

(

M2

√
2mW cos β√

2mW sin β µ

)

detailed properties of χ±
1,2 (gaugino-,Higgsino-like) depend on values of

parameters

• Neutralinos similar

“Typical” mass spectrum
(m0 = 100 GeV,m1/2 = 200 GeV)

mχ0
1
∼ 100 GeV

mχ±
1 ,χ0

2
∼ 160 GeV

mχ±
2 ,χ0

3,4
∼ 350 GeV

m
ℓ̃
∼ 150 GeV

mq̃ ∼ 500 GeV
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• Of course all moves with m0, m1/2

•mt̃1
can be moved arbitrarily by changing A
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mSUGRA

The minimal model which is mostly studied is given by:

• Gravity mediated SUSY breaking

• Minimal Higgs sector (2 doublets)

• Unification of masses at the GUT scale

• Free parameters

– m0: universal scalar mass at GUT scale

– m1/2: universal fermion mass at GUT scale

– tan β: ratio of Higgs vacuum expectation value

– A0: universal trilinear coupling at GUT scale

– sign(µ): the absolute value of µ is given by electroweak symmetry
breaking
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Gauge mediated SUSY breaking

• SUSY is broken at intermediate scales (103 − 108 GeV) by gauge inter-
actions involving messengers between the visible and the hidden sector

• Main free parameters:

Mmess messenger mass scale
Nmess number of messenger generations
Λ universal soft braking scale
tan β
sign(µ)

• Main differences to SUGRA

– very light gravitino ∼ eV

– NLSP either χ0
1 with χ0

1 → G̃γ or ℓ̃ with ℓ̃ → G̃ℓ (if mixing is large
in 2nd case, τ̃1 is NLSP)
in both cases NLSP lifetime can be significant

– sfermion masses ∝ αi, i =QED,QCD
⇒ larger mass splitting between sleptons and squarks
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Gaugino and Sfermion Mass Parameters
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SUSY limits

• Searches for SUSY at all past accelerators

• Most stringent model independent limits from LEP
ms̃ >∼ 100 GeV for s̃ 6=LSP
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For the LSP a limit is possible assuming minimal SUGRA
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Where do we expect SUSY

• Hierarchy problem suggests that SUSY is below 1 TeV

• (g − 2)µ can be best explained by SUSY just above the LEP limit
(however not all corrections fully understood)

• Cosmology also prefers light SUSY with some bands extending to high
masses
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SUSY at the LHC

• Most studies are within mSUGRA with R-parity conservation

• R-parity conservation results in stable, invisible LSP ➟ missing ET

• Squarks and
gluinos are
strongly inter-
acting
➟ Large cross
sections even at
high masses

le, weakly 

interacting lightest neutralino follows.
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• Squarks and gluinos decay in long chains
➟ also access to charginos, neutralinos, sleptons

• Cascades produce also leptons ➟ easier background rejection
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SUSY discovery modes

• 2 missing LSPs per event don’t allow to reconstruct mass-peaks

• However they result in large missing ET

• Leptons can help to reduce background

• Typical preselection: ≥ 4 jets, Emiss
T > 100 GeV

• Separating variable: Meff = Emiss
T +

∑

jets,leptons pi
T

0-lepton mode
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Even cleaner: 2 leptons

• Most events start with g̃g̃ ➟ charge symmetric

➟ There is no charge correlation of leptons from different g̃

➟ The probability for same-charge and opposite-charge lepton pairs is
equal

• On the contrary SM events with two leptons like , Z-production,
W+W− production produce opposite-charge pairs

➟ Very clean sample

• However less events

ysics at LHC 2008 6

1 fb-1

ATLAS PreliminaryATLAS Preliminary

Same Sign
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How to understand the background

QCD multijet background is difficult to predict

➟ better to estimate with data

Example: Z+jets events:

lepton

lepton
Control sample Z->  BG

p

jets jets

replace

• Select Z+jet events with Z → ℓ+ℓ−

• Calculate Emiss
T removing leptons

• Use MC to verify procedure (and get small corrections)
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Procedure works well

> 20GeV

However BR(Z → νν)/BR(Z → ℓℓ) ≈ 6 ⇒ statistical errors increase
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LHC reach for discovering SUSY

• The 1 TeV region can be excluded
already after a very short time

• With 300 fb−1 masses of ∼ 3 TeV
can be excluded

• In most of the region several sig-
natures are visible
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SUSY at 7 TeV

• Limits will be lower due to lower energy and luminosity

• Nevertheless limits around 700 GeV will be possible
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How to measure SUSY properties?

• Two missing LSPs with unknown mass
➟ no mass peaks can be reconstructed

• Simplest case 3-body decays, e.g.: χ0
2 → Z∗χ0

1 → ℓℓχ0
1:

m(ℓℓ) < m(χ0
2) − m(χ0

1)

• More complicated case sequential 2-body decays: χ0
2 → ℓ̃ℓ → ℓℓχ0

1:

m(ℓℓ) < m(χ0
2)

√

√

√

√1 −
(

m(ℓ̃)

m(χ0
2)

)2
√

√

√

√1 −
(

m(χ0
1)

m(ℓ̃)

)2

• Mainly sensitive to mass differences

• Absolute masses can be measured with over-constrained system
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• After SUSY selection background is already small

• However also background from wrong pairing in SUSY events

• Good pairing are leptons of same flavour

• SM background (WW+X) and wrong SUSY pairing are symmetric in
lepton flavour

➟ can subtract background from data

1 fb-1

ATLAS PreliminaryATLAS Preliminary

ATLAS PreliminaryATLAS Preliminary

1 fb-1

1 fb-1

ATLAS PreliminaryATLAS PreliminaryATLAS PreliminaryATLAS Preliminary

ATLAS PreliminaryATLAS Preliminary ATLAS PreliminaryATLAS Preliminary

1 fb-1

Good precision on mass-edge possible!
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Look at

(near) (far)

Several mass edges can be reconstructed:

•m(ℓℓq, max)

•m(ℓℓq, min)

•m(ℓnearq, max)

•m(ℓfarq, max)

SUSY masses can then be obtained from a
fit to all edges

�
���3

����������	

����������	
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Masses can be determined by a global fit

Precision on masses: 20-50%

However precision on mass differences: 1-5%

LHC (+ILC) precision on m(χ0
1) and m(q̃)
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If mSUGRA is assumed, m0 and m1/2 can be determined with 5-10%
precision

However also here a strong correlation remains

For reasonable precision on tan β, A need measurements of heavy Higgses
and t̃ masses.
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Can the LHC prove that it discovered SUSY?

• Suppose LHC has discovered new particles that seem to be partners of
SM particles

• However e.g. in extra dimension models there can be partners of same
spin

• Spin measurement is one necessity to prove SUSY

• Ideally would also like to measure couplings
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(near) (far)
ℓ(near) can be positive or negative
For χ0

2 with spin 1/2 there is a charge asymmetry in the ℓq mass, for spin
0 it is symmetric

spin 0

spin 1/2
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Dilution factors:

• ℓ(near) and ℓ(far) cannot be distinguished ➟ add them

• anti-q̃ gives opposite asymmetry as q̃
➟ pp collider produces more q̃ than anti-q̃

ysics at LHC 2008 16

Asymmetry SU3 
OSSF-OSOF

L= 30 fb-1

e

Some asymmetry remains ⇒ excludes scalar

However be careful: q̃ spin is assumed
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Complication at large tan β τ̃s

If tan β large:

• Significant mixing in τ̃ sector (∝ mf (Af − µ tan β)) ⇒
– τ̃ lighter than ℓ̃

– left handed component in τ̃ favoured in Wino decay

• Larger Higgsino component in lighter neutralino, chargino ⇒
– Stronger coupling to heavier sfermions

All this favours τ̃ over ẽ, µ̃
Need to analyse SUSY with τ
leptons
ττ mass measurement worse
resolution but possible
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Some comments on models

• mSUGRA with universal masses gives very few parameters
➟ easy for simulation studies

• However in nature (if SUSY should be found)

– don’t know if gravity mediation is true at all

– don’t know if masses are universal (for sfermion masses relatively
straight forward to measure, for gauginos complicated)

– don’t know if Higgs sector is minimal (more complicated Higgs sector
would actually solve some theoretical problems)

• Discovery of “new physics with invisible particles” is relatively robust

• Prove that this is SUSY will be difficult, although some evidence will
be obtained

• Reconstruction of the underlying model will be even more difficult

• A discussion is only possible when the data are there
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Gauge mediated SUSY breaking

Main phenomenological difference: Gravitino is very light (eV) ➟

• The NLSP can be charged (typically τ̃ or degenerate sleptons) or neu-
tral (typically χ0

1)

• The NLSP lifetime can be from short (prompt decays at the main
vertex) to long (stable inside the detector)
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Typical signatures:

• Neutralino NLSP

– Prompt decay: di-photon signature

– Intermediate lifetime: non pointing photons

– Long lifetime: like mSUGRA (mass pattern!)

• Stau NLSP

– Prompt decay: di-lepton final state (lower missing ET )

– Long lifetime: stable heavy leptons

Decay chains in GMSB

�7+���$�&���7��
����

�	��>��
��$��	�>��8
�7+���$�&���7��
����

�	���
���>��8

Physics at the LHC Lecture 9-37 Klaus Mönig



Prompt photon scenario

Start with “standard” SUSY
cuts on Emiss

T , NjetspT (jets)
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Accessible region can be discovered with low luminosity
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Quasi stable lepton scenario

• NLSP lifetime can be so large that it decays outside of the detector

• If charged slepton is NLSP there are two signatures:

– the lower velocity β can be measured with the drift chambers

– the high specific ionisation can be measured with detectors that have
pulse-height readout
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This would allow absolute mass measurements!

(

m = p

√

1

β2
− 1

)

(
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Conclusions on Supersymmetry

• The most probable part of the supersymmetric parameter space will be
visible at the LHC already with low luminosity

• Inside a given model parameter fits are no problem

• However it will be difficult to prove that it is really SUSY and to fix
the model unless striking signatures are present
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