Physics at the LHC Lecture 5: The Standard Model at the LHC (II)

Klaus Mönig, Sven Moch

(klaus.moenig@desy.de, sven-olaf.moch@desy.de)

Wintersemester 2010/2011

The underlying event

- At the LHC the parton-parton cross section integrated over the PDFs exceeds the proton-proton cross section
- This is interpreted as several parton-parton scatterings during one inelastic pp event
- There are indications that the hard partons concentrate in the core of the event
- For this reason the underlying event does not simply look like minimum bias

Analysis of the underlying event:

- 2-jet events are back-to-back
- Select events with one hard jet
- The opposite region should contain the 2nd jet

- Generators without multiparton interactions cannot describe the data
- However generators with UE can be tuned to agree with the data
- Warning: it cannot be expected that the Tevatron tunes describe the LHC data

LHC studies with charged tracks have started, calorimeter-jets will follow

Gauge bosons at the LHC

- Gauge bosons are produced via quark-antiquark annihilation
- The quarks are in a regime where the PDFs are well known from HERA
- \bullet Theoretical predictions should thus be possible to a few %
- Experimentally only the leptonic decays of W and Z are visible
- Expected cross sections at 7 TeV: ~ 10 nb for $pp \to W \to \ell \nu$, ~ 0.8 nb for $pp \to Z \to \ell^+ \ell^-$

Event selection

$Z \to \ell^+ \ell^-$:

• Just need two loosely defined leptons and invariant mass cut

 $W \to \ell \nu$

- Need one high p_t lepton with stricter requirements (fakes!)
- Missing E_T largely suppresses QCD background
- Final selection from transverse mass

W,Z cross sections

W,Z cross sections agree well with theory

This is a stringent test of QCD

The calculations are so precise that it may even be used as luminosity monitor

W,Z ratios

- Ratios are a better test of the theory calculations since luminosity and some other systematics drop out.
- In a pp machine also the ratio W^+/W^- is $\neq 1$ because a proton contains more u- than d-quarks
- The ratios may be used to constrain PDF fits

<u>Measurement of the W-mass</u>

- The W-mass is (together with $\sin^2 \theta_{eff}^l$) one of the precision measurements to constrain the Standard Model
- It is known to 30 MeV from LEP and to similar precision from the Tevatron

In new physics models with more free parameters $m_{\rm W}$ is complementary to $\sin^2\theta^l_{eff}$

Measurement strategy:

- Cannot reconstruct mass, only transverse momentum of ν can be reconstructed using hadronic recoil
- In principle p_t -lepton is sensitive, however uncertainties from $p_t(W)$
- Can be cured using transverse mass
- mass
 Main uncertainty from lepton energy-scale (and jet energy scale)
- Can be calibrated using Zproduction
- At Tevatron limited by Z-statistics
- \bullet Estimated precision at LHC between 15 and 5 MeV

Top-quarks at the LHC

Top pair production:

• $q\bar{q}$ and gg, gg largely dominates at LHC Top cross section at 14 TeV ~ 800 pb $\Rightarrow 80\,000\,000$ events in 100 fb⁻¹ ($\sigma_t \sim 170$ pb at 7 TeV)

Top decays: $t \rightarrow bW$ (99.8%) with

$$\begin{array}{ll} W \to q\bar{q} & 2/3rd \\ W \to \ell\nu, \ \ell = e, \mu \ 2/9th \\ W \to \tau\nu & 1/9th \end{array}$$

(Rest is $t \to s, dW$)

- Always have jets in top events
- Always have b-quarks

This means for $t\bar{t}$ events:

- 45% 2 b-jets + 4 light jets
 - $-\operatorname{everything}$ can be reconstructed
 - -however large pairing ambiguities
 - -large QCD backgrounds
- \bullet 30% 2 b-jets, 2 light jets, 1ℓ , 1ν
 - the neutrino can be reconstructed with a 2-fold ambiguity using the W-mass
 - pairing ambiguities are less
 - lepton strongly suppresses QCD background
- $\bullet~5\%~2$ b-jets, 2ℓ , 2ν
 - -clean samples
 - $-\operatorname{however}$ few constraints for reconstruction
- Rest contains $\tau s \implies$ difficult

Top Pair Decay Channels

Intermezzo: b-tagging at colliders

- b-quarks decay semileptonically with $BR(b \rightarrow \ell X) = 2 \times 10\%$
 - $-\operatorname{can}$ be used for b-tagging
 - -however low efficiency from the beginning
 - leptons inside jets where fake rate is high
- \bullet b-quarks have significant lifetime ($c\tau \sim 0.5 {\rm mm})$
 - $-\,\mathrm{e.g.}$ flight distance of 50 GeV B-meson: \sim 5mm
 - impact parameter w.r.t. primary vertex: $\sim 500 \mu m$
 - $-\,\mathrm{resolution}$ of modern vertex detectors: $\sim 10 \mu\mathrm{m}$
 - \implies can use vertexing for b-tagging

Impact parameter methods

- Signed track impact parameter gives already good sensitivity for b-tagging
- Calculate probability for optimal use

$$\mathcal{P}_i = \int_{d_i/\sigma_{d,i}}^{\infty} \mathcal{R}(x) dx$$

• Tracks in a jet/event can be combined

$$\mathcal{P}_0 = \prod_i^N \mathcal{P}_i \quad \mathcal{P} = \sum_0^{N-1} \frac{(-\ln \mathcal{P}_0)^j}{j!}$$

- In principle this method gives an optimal separation of b- and light jets
- However very sensitive understanding of tracking

Enhancement/alternative: secondary vertices

- Secondary vertices are not faked so easily by reconstruction problems
- The vertex mass gives a good separation especially to c-quarks
- The energy of the fitted particles normalised to the jet energy makes use of the hard b-fragmentation (average B energy is ~ 80% of jet energy)

With the available methods e.g. a light quark rejection of 10^3 and a cquark rejection of 10 can be achieved for 50% b-efficiency (tt events)

B-tagging in 2010

- Sophisticated methods require good detector understanding
- Prefer simple methods for startup
- User secondary vertex tagger

Selection of $t\bar{t}$ events

Concentrate on mixed decays:

- $E_{T,miss} > 20 \,\text{GeV} \text{ (neutrino!)}$
- 1 isolated lepton with $P_T > 20 \,\text{GeV}$
- 2 b-jets with $p_T > 40 \text{ GeV}$ and $\geq 2 \text{ light jets with } p_T > 40 \text{ GeV}$

(At the beginning of data taking b-tagging can be dropped at the price of a larger background)

Hadronic W reconstruction

- Accept light jet pair if consistent with $m_{\rm W}$ at 3σ
- Rescale jets to $m_{\rm W}$ using a χ^2 technique
- Cut again on jet-jet mass around $m_{\rm W}$

W-b association

 \bullet Take the combination with minimal ΔR

Top mass distribution for the top-mass analysis

450 ATLAS preliminary Wrong b fb^{-1} 400 single top • Selected top-sample 350 dilepton has fully hadronic W +jets very little non-t \overline{t} back-300 ground 250 determination • For mass 200 most serious background is 150 combinatorial background 100 Jull way la 50 50 100 200 250 300 350 400 150 n M_{ijb} [GeV]

Top quarks at 7 TeV

• Semileptonic analysis:

- Cut on $p_T^{\ell} > 20 \text{ GeV}, E_{T,miss} > 20 \text{ GeV}, m_T + E_{T,miss} > 60 \text{ GeV}$
- $-\,{\rm Require}$ 1 b-tag and take signal from events with 4 jets with $p_T>25\,{\rm GeV}$

3-jet mass combinations peak at top-mass as expected

• Dilepton analysis:

 $- ee (\mu\mu)$: require $E_{T,miss} > 40 (30) \text{ GeV}$

 $-e\mu$: scalar sum of transverse energy $H_T > 150 \text{ GeV}$

- no b-tagging needed

Jet and b-iet distributions agree with expectation

Measured cross section agrees well with SM prediction

Measurements of the top-quark mass

Why is the top mass interesting? SM:

• Electroweak precision data are affected by loop corrections

- Can be used e.g. to constrain $m_{\rm H}$
- Top-quarks corrections are quadratic \implies need to be known to get useful results

For this need $m_{\rm t}$ measurement of $\mathcal{O}(1\,{\rm GeV})$

Beyond SM

- Some models like SUSY predict the Higgs mass from the model parameters
- Here the $m_{\rm t}$ corrections can be of order $\Delta m_{\rm H}/\Delta m_{\rm t} \sim 1$
- \Longrightarrow In principle a much better top mass is needed

Current uncertainty from the Tevatron: $\Delta m_{\rm t} = 1.2 \,\text{GeV}$ This does not yet include

- errors from colour reconnection effects
- uncertainties from the mass definition

which might add up again to $1\,{\rm GeV}$

Expectation at the LHC: $\Delta m_{\rm t} \lesssim 1 \,{\rm GeV}$

- totally dominated by systematics
- largest experimental uncertainty: energy scale of b-jets
- errors from QCD might be of similar size

Search for rare top decays

The SM predicts FCNC top decays $(t \rightarrow Zq, \gamma q, gq)$ on the $10^{-14} - 10^{-12}$ level

In some new physics scenarios 10^{-4} can be reached Example for a $t \to Zq, \ Z \to \ell\ell$ selection:

Description of	$\begin{array}{c} \text{Signal} \\ t \to Zq \end{array}$	Background Processes		
		Z+jets	Z + W	$t\bar{t}$
Cuts	ε (%)	Nevt	Nevt	Nevt
Preselection	80.2	3.7×10^{5}	2941	11.7×10^{5}
3 leptons, 2 jets				
3 leptons, $p_T^{\ell} > 20 \text{ GeV}/c$	43.3	945	1778	1858
$p_T > 30 \text{ GeV}$	32.7	80	1252	1600
2 jets, $P_T^{jet} > 50 \text{ GeV}/c$	19.8	31	225	596
$m_Z \pm 6 \text{ GeV}$	16.8	24	180	29
one b-tag	8.2	10	28	10
$m_t \pm 24 \text{ GeV}$	6.1	0	2	5

Even the LHC can only scratch the interesting region!

Measurement of single top production

Feynman graphs

 \bullet Statistical error no problem, however systematics can be in 20% region

Conclusions of 5th lecture

- Standard Models measurements test QCD end EW theory
- The large statistics allows precision test
- SM measurements are important to understand backgrounds for new physics searches
- However they can also test new physics directly using loop corrections