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Minimum bias events

Proton-proton cross section at high energies O(100mb)
⇒ several soft events per bunch crossing at LHC (“minimum bias”)

Also predictions for quantities like multiplicities rather uncertain
⇒ must measure these events at LHC with low luminosity
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The total cross section can be written as

σ = σel + σsd + σdd + σcd + σnd

Approximate values at 14 TeV [mb]

σtot σel σsd σdd σcd σnd

100 20 15 10 1 60

Largest part is non-diffractive collisions with particles distributed over the
full η range.
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Calculation of nd-cross section

σpp(s) =

∫

x1

∫

x2

dx1dx2 pg(x1)pg(x2) σgg(x1x2s)

• gg cross section above a cutoff pt,cut can be calculated in perturbative
QCD

• The calculated cross section is larger than then measured pp cross sec-
tion

• Standard explanation, multiple interactions: In one pp interaction sev-
eral parton-parton interactions take place

• This makes the events dependent on the transverse parton distributions

➟ Events even more difficult to predict
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Typical signals of multiple interactions:

Tails in multiplicity distributions Rise of 〈pt〉 vs Nch

Other observables are sensitive to fragmentation parameters
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Analysis of minimum bias events

• The experiments have a large dataset at 7 TeV, a reasonable one at
0.9 TeV and a small dataset at 2.36 TeV

• At 2.36 TeV no stable beam was declared so that data are not always
taken under nominal conditions

• The experiments have analysed the data with different phase space cuts

• Especially ATLAS does not try to correct for full phase space and
specific subprocesses to avoid model dependent corrections
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Results:

• Multiplicity rises significantly with
energy

• Also average transverse momen-
tum rises
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Description by Monte Carlo generators is marginal
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• With harder phase space cuts the diffractive components can be sup-
pressed

• In the diffraction depleted selection a satisfactory Monte Carlo tuning
is possible

chn

10 20 30 40 50 60

ch
n

/d
ev

 
N

 d⋅ 
ev

N
1/

0

0.02

0.04

0.06

0.08

0.1

chn

10 20 30 40 50 60

ch
n

/d
ev

 
N

 d⋅ 
ev

N
1/

0

0.02

0.04

0.06

0.08

0.1

 = 7 TeVsPYTHIA ATLAS MC09c   

non-diffractive

single-diffractive

double-diffractive

 1≥ 
ch

n | < 2.5, η > 500 MeV, | 
T

p

ch
n

/d
ev

 
N

 d⋅ 
ev

N
1/

-710

-610

-510

-410

-310

-210

-110
 6≥ 

ch
n | < 2.5, η > 500 MeV, | 

T
p

 = 7 TeVs

Data 2010
PYTHIA ATLAS MBT1
PYTHIA ATLAS MC09c
PYTHIA DW
PYTHIA Perugia0

ATLAS Preliminary

ch
n

/d
ev

 
N

 d⋅ 
ev

N
1/

-710

-610

-510

-410

-310

-210

-110

chn
10 20 30 40 50 60 70 80 90

R
at

io

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Data Uncertainties
MC / Data

chn
10 20 30 40 50 60 70 80 90

R
at

io

0
0.2
0.4
0.6
0.8

1
1.2
1.4

 [ 
G

eV
 ]

〉
T

p〈

0.6

0.8

1

1.2

1.4

1.6  6≥ 
ch

n | < 2.5, η > 500 MeV, | 
T

p
 = 7 TeVs

Data 2010
PYTHIA ATLAS MBT1
PYTHIA ATLAS MC09c
PYTHIA DW
PYTHIA Perugia0

 [ 
G

eV
 ]

〉
T

p〈

0.6

0.8

1

1.2

1.4

1.6

ATLAS Preliminary

chn
10 20 30 40 50 60 70 80 90

R
at

io

0.9

1

1.1

1.2

Data Uncertainties
MC / Data 

chn
10 20 30 40 50 60 70 80 90

R
at

io

0.9

1

1.1

1.2

Physics at the LHC Lecture 2-9 Klaus Mönig



Jets in e+e−

Theory: calculates final states with
quarks and gluons

Experiment: Measures hadrons
 DELPHI Interactive Analysis

Run: 26154
Evt: 567

Beam: 45.6 GeV

Proc: 30-Sep-1991

DAS : 25-Aug-1991
21:30:55

Scan: 17-Feb-1992
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Must try to understand transition partons → hadrons

Must try to reconstruct partons from hadrons
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Experimental observation:

• Hadrons come in bundles (jets)

• Jets remember parton momentum

Signed cos θ distribution of jets in polarised e+e− scattering
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Model of fragmentation

• Quarks and gluons radiate gluons

• Gluons split into qq̄ pairs

• “final state” partons rearrange into hadrons

MC description of gluon emission/splitting (parton shower)

• Radiation according to QCD
splitting functions

• Interference dealt with by or-
dering principle (e.g. angular
ordering)

• Shower stops at a scale of typ-
ically 1 GeV

• First one or two radiations can
be according to exact matrix
element

f(x,Q2) f(x,Q2)
Parton
Distributions

Hard
SubProcess

Parton
Shower

Hadronization

Decay

+Minimum Bias
Collisions
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Fragmentation models

String fragmentation (Pythia, Lund model)

• Quarks span a string between them

• When the quarks move apart string tension increases

• When the tension reaches a critical value string breaks creating a new
qq̄ pair at the new ends

• When the energy is small enough hadrons are formed

Cluster fragmentation (HERWIG)

• Remaining gluons split into qq̄ pairs

• qq̄ pairs rearrange into colour singlet clusters

• Clusters decay isotropically
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Jet algorithms

Try to “undo” fragmentation

Warning: Hadrons are colour singlets, quarks and gluons are colour
triplets/octets ⇒ quark/gluon “reconstruction” can never be exact

General jet algorithm:

• Define distance measure dij for pair of particles

• Define combination algorithm

Jet algorithm

• Calculate dij for all pairs and find dij,min

• If dij,min > dcut STOP

• Combine particles corresponding to dij,min

• Restart
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Distance measure:

• Most obvious choice: invariant mass (JADE algorithm)

In practice massless approximation dij =
EiEj

s (1 − cos θ)

– was successfully used for QCD studies

– algorithm tends to cluster all low energy particles first ➟ not so good
for parton reconstruction

• To solve this problem replace mass by relative transverse momentum
(kT , Durham algorithm)

dij =
min(E2

i E
2
j )

s (1 − cos θ)

– equally well behaved for QCD studies

– prefers to combine low angles ➟ closer to physics of parton showers
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Combination procedure

• Most obvious: add 4-momenta pn = pi + pj

• Quarks and gluons are massless, two alternatives in use:

– add 3-momenta and calculate energy assuming m = 0

– add 4-momenta and rescale 3-momentum so that m = 0

Infrared and collinear safety:

• QCD Feynman graph diverges for pg → 0
➟ algorithm must be stable when particle with p ≈ 0 is added

• QCD Feynman graph diverges for splitting with θ → 0
➟ algorithm must be stable when particle is split into two with θ ≈ 0

ok for JADE and kT
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Jet rates in e+e−

      91 GeV
10

−3

10
−2

10
−1

1

10
−4

10
−3

10
−2

10
−1

JADEJADE ycut

R

JADEJADEJADEJADEJADEJADEJADEJADEJADE

10
−3

10
−2

10
−1

1

10
−4

10
−3

10
−2

10
−1

DURHAMDURHAM ycut

R

DURHAMDURHAMDURHAMDURHAMDURHAMDURHAMDURHAMDURHAMDURHAM

2−Jet
3−Jet
4−Jet
5−Jet

MC

DELPHI

Physics at the LHC Lecture 2-17 Klaus Mönig



Jets in pp

Differences to e+e−

• Protons disappear as colour non-singlets in the beampipe

• Final state is boosted and algorithms not Lorenz invariant

• The underlying event adds activity in the detector

• At high luminosity there are additional minimum bias events that can-
not be separated

Must adapt kT algorithm

New algorithms in pp (pp̄): cone algorithms
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Adaptation of kT algorithm

• Replace 1 − cos θij by ∆Rij =
√

(yi − yj)2 + (φi − φj)2

• Distance dij = min(p2
t,i, p

2
t,j)

∆Rij

D2 (D adjustable parameter)

• Add to pairs also single particles di = p2
t,i

• If minimum is a particle: Define as jet and remove from list

• If minimum is a pair combine and start again

• Stop if nothing left

Features of the kT algorithm

• Every hadron is uniquely assigned to a jet

• Every hadron is assigned to a jet

– few hadrons that belong to a given parton are missing

– significant noise from underlying event and minimum bias

• Jets have complicated shapes
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Cone algorithms

• Naively imagine a jet as a energy flow within a cone in (y, φ) space

• Consequently 1st pp̄ jet algorithms add energy within a cone

• Iterative procedure

– Start with a cone containing some energy and opening angle R

– Calculate the cone cen-
tre e.g. by adding 4-
momenta

– Recalculate energy in
cone

– Iterate until a stable
cone is reached.
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Stability problems

• Solution is not unique

• Usually seeds are used in experiment ➟ infrared
unsafe (partially solved by artificial seed between
two real ones (midpoint algorithm))

• Large fragmentation corrections in cases where
two jets are merged into one

• Jets may overlap and splitting procedure is
needed
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• A new cone algorithm exists that is equivalent to a seedless one solving
the theoretical problems (SISCone)

• Anyway it turns out that the theoretical uncertainties are only on the
10% level

Features of cone algorithms

• Low energy hadrons are not all included in jets

– energy missing for event reconstruction

– lot of underlying event/pileup rejected

• Jet shapes are usually round ➟ makes underlying event, pileup, noise
corrections easier
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New idea: anti kT algorithm

Define new distance measure: dij = min(p−2
t,i , p−2

t,j )
∆Rij

D2

• First cluster high energy with high energy and high energy with low
energy particles

• This keeps jets round, with well defines area

• Algorithm still infrared and collinear safe!
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Typical shapes for IR and collinear safe algorithms

Physics at the LHC Lecture 2-24 Klaus Mönig



Experimental issues

• Some part of the jet is outside the cone ➟ needs corrections

• Energy from the underlying event or pileup gets into the cone

• Treatment of noise in the calorimeter cells affects reconstructed jets
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Dependence of jets on calorimeter treatment
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Results of different jet algorithms for one CDF event

Physics at the LHC Lecture 2-27 Klaus Mönig



QCD predictions for jet-rates

• Jet-events originate from
gg, qg, qq scattering

• They can be calculated in
QCD integrating over the
PDFs

• At medium energies qg
dominates, at high energies
qq is dominant

Composition of jet events at the Tevatron
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Jet cross sections at the LHC

Uncertainties due to PDFs are of
the order 20-30%

Rates at L = 1034cm−2s−1

• 1000 ev./s for pT > 100 GeV

• 1 ev./s for pT > 1 TeV
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Measurements from the LHC

The inclusive jet rate for pT < 500 GeV and the jet-multiplicity with rela-
tively soft cuts have been measured with 0.1% of the present multiplicity
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The jet-observables allow already to set limits beyond the Tevatron!

E.g. Mass of excited quarks > 1.5 TeV from the jet-jet mass
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and a contact interaction limit of 3.5 TeV from the angular distribution
at high jet mass
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Conclusions of 2nd lecture

• Minimum bias events have been studied and the non-diffractive part
seems understood

• Quarks and gluons always end up in jets

• Most interesting physics at the LHC involves final state quarks (and
gluons) ➟ jets

• There is always an arbitrariness in the definition of jets

• With jet-observables the LHC already surpasses the Tevatron
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