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Schedule of the LHC
A (very rough) schedule of the LHC could be

© 2010-2012: Run at /s =7 — 8 TeV with £ ~ 1 th~!
e 2013: Upgrade the machine to y/s = 14 TeV

® 2014-2016: Run at /s = 14 TeV with £ ~ 10%em =25~ correspond-
ing to £ ~ 10 fb~!/a

e 2017 Maybe shutdown for machine upgrades (new collimation system)

e 2020: Run at /s = 14 TeV with £ ~ 10%*cm~?s~! corresponding to
L~ 100 fb~1/a

After that progress in statistical errors will be slow (AX o VL)

Possible upgrades:

e SLHC: increase luminosity

e DLHC: increase energy
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Peak luminosity of a collider: LB

I Nanbfr’YF _ N[?nbfr’YF
Ao 0y Awen0*

Np: number of particles per bunch

np: number of bunches in the machine

fr: revolution frequency

£, normalised emmitance

3*: beta value at the IP (focusing strength)

F': reduction factor due to crossing angle
Determined by:

Ny, ent injection chain
3% focusing magnets around experiment
F': beam separation scheme

np: electron cloud effect
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First stage:

e Upgrade collimation system

e Replace final focusing magnets by stronger ones with larger aperture:
= 3% = 25cm = L =2-10%%m 27! factor 2

Second stage:

Improve Ny, €, by rebuilding part of the injection system:

e [njection system is anyway old and partly unreliable (PS is 50 years)
e Limit is space charge effects in booster and PS

e Build new linacs to enter in PS with higher energy

e Rebuild PS

e Sceveral improvements on SPS may be necessary

e Install crab-cavities to improve beam-beam overlap in crossing

e Details are still being worked out
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e Aim is to get a factor 10 in the integrated luminosity
e However

— Beam lifetime becomes bad due to pp interactions with £ =
10%2em 2!
— High pileup rate makes analysis difficult at this rate

e Possible way out: luminosity levelling

— Detune the beam in the beginning to get to a lower luminosity like
L=5-10%cm %!
— While the beam decays keep £ at the initial value

— This gives a higher integrated luminosity with better experimental
conditions

Physics at the LHC Lecture 14-5 Klaus Monig



The CERN accelerator complex
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The upgraded a injector chain
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Detectors for the SLHC

e The inner detectors will die from radiation

e The granularity needs to be increased to cope with 300 minimum bias
events per bunch crossing

e This means finer pixels, more pixel layers, shorter strips, all silicon
tracking

e Some trigger upgrades may be needed to cope with the higher rates

e Eispecially a more granular muon trigger (including the 1D?) maybe
needed

e The FCAL needs to be replaced because the 1Ar start boiling
e The other detectors should be ok
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Detector occupancy for different luminosities
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DLHC

e Need to replace all magnets to increase the energy significantly
e Doubling the field or even more is only possible with new materials

e Magnet R&D has started

e [n any case this will be very expensive
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The physics case for SLHC and DLHC

Reach for new discoveries:

e The PDFs are steeply falling at high x

[J The energy reach increases by typically 20% for a 10 fold luminosity

Increase

Tk B DA AT AR AL A AL AR~ LU R j
e The PDFs stay almost con- - VS=14Tev / Vs=28 Tev /..A
stant for a two-fold energy — 1o* | NiaSh dipotes - -
increase P ]
: | -
e The cross section typically = N L[28]/L[42]=10 :

falls with 1/s however the &

O = up \S = 42 TeV “
luminosity should grow o Bi-2212 dipoles 5
S ig—1 pp -> W’ _'_!|

[1 The reach about doubles L W ] et 3
for doubling the energy T e o
M[W’] (GeV)
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Measurements and rare processes:

e The statistical error goes with /n or S/v/B

[1 The statistical power increases by a factor 3 for 10-fold luminosity
e [n case of no background the sensitivity can even scale with 1/L£

e However many measurements are systematics limited [ no or only little
1mprovement

Example Higgs

Rare decays:

600 fh—L 6000 fb—!
H — Zv 3.50 llo
H — pp < 3.50 ~ (0
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Next generation lepton colliders

Disadvantages of hadron colliders:

e Parton energies are much lower than proton energy
e Interaction on the parton level is unknown

e Proton remnant disappears in beam-pipe
= kinematics must be reconstructed from the decay products

e Protons have strong interactions

— High background

— Not all processes can be reconstructed
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In principle all problems can be solved with lepton colliders

e Leptons are point like

_|_

— Interaction energy = e"e” -energy

— Energy-momentum conservation can be used to reconstruct the event
kinematics

e Leptons have no strong interactions

— Low backgrounds

— All events can be reconstructed
e Leptons can be polarised

— Helicity structure of couplings can be measured
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Problem: Synchrotron radiation

4
e Synchrotron radiation in circular machines: AFE o (%) %

e LEP: /s = 200 GeV, circumference=27km [ AE = 2.5 GeV per turn

e Circular machines no longer possible
(A 500 GeV in the LEP/LHC tunnel would have 100 GeV loss/turn)

e Way out: Linear Collider

—can use each bunch only once = luminosity loss
— compensate by extreme focusing (bunch size around O(5 x 100nm))

— main challenges: high accelerating gradients to keep machine reason-
ably short and beam steering to achieve small beam size
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The ILC project

e The ILC is a linear collider based on superconducting technology
e The ILC is an international project supported by all regions
e A reference design report has been written

e A detailed technical design is currently under way

Gross parameters:

e First phase: /s < 500 GeV

e Upgrade: /s ~ 1TeV

e Tunnel length ~ 30km

e Acceleration gradient ~ 35 MeV /m

e Luminosity £ ~ 2 —5- 103 ecm =271 =~ 200 — 500 th~! /year
e Polarised electron beams (P = 80-90%)
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Program options

Depending on the physics several options can be realised at the ILC

e Polarised Positrons

— Positron source (helical undulator) produces polarised positrons at the high energy
end

— With a small upgrade P = 40-60% at the IP is possible
o GigaZ
— ILC can be run at the Z pole with small modifications

—10Y events at the Z pole with polarised beams and W mass from threshold scan to

~ 6 MeV
ec ¢ running (L(e"e”) ~ 1/3L(eTe))
® 77, ¢y collider

— The electron bunches can be collided with a high power laser a few mm in front of
the IP

— This “converts” the electron beam into a photon beam (£, < 0.8E,)

—L(Vs(yy) > 0.8/s) ~ 0.1L(e7e7))
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Basic layout of a Linear Collider

Electrons Detectors Electron source Positrons
Undulator

)

Beam delivery system

Main Linac Damping Rings Main Linac

Basic structure: 9-cell niobium cavities
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The CLIC project

e From the physics case it would be nice to have a several TeV eTe™
collider

e The ILC technology gets too expensive going significantly above 1TeV
e Possible alternative: two beam scheme:

—generate a high current low energy drive beam

— guide this beam through unpowered cavities where it excites oscilla-
tions

— transfer the energy into a parallel structure

— use this structure to accelerate a high energy beam
e Hope to reach a gradient of ~ 150 MeV /m (4x ILC)
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The CLIC principle
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Possible layout of CLIC
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CLIC status

e The two-beam scheme itself 1s verified

e A conceptual design report and a technology demonstration are foreseen
for this year

o After first LHC relevant results (early 20137) a decision for one of the
eTe™ linear collider projects can be taken

e The LHC results determine the necessary energy of the new machine

e Construction time for both projects is around 8 years (+political delays
& resources availability)
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New problem at linear colliders: beamstrahlung

Beams at IP are extremely collimated with many electrons/bunch

Energy of colliding electrons

104

— very high charge density

= Electrons of one bunch radiate
against the coherent field of the other
bunch (Beamstrahlung) :
Average energy loss for colliding ot
eTe -pairs at 500 GeV: ~ 1.5% :
Beam energy constraint gets weak- . 2

ened (like for ISR) S

10 |

1

10
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The Physics case for eTe™ linear colliders

Example 1. Higgs

o If a Higgs exists, the LHC will find it

e However the LHC can measure its properties only with a limited accu-
racy

o In e"e~ the Higgs is visible in in Higgsstrahlung and WW-fusion

L,
AW
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Higgs production cross section:

3
=z Y —— m,=120GeV (HZ)
. C e m,, =500 GeV (HZ)
. —— m, =120 GeV (WW-fusion)
F e m,, =500 GeV (WW-fusion)
10° -
10
1 --\--\-.\--\--\-'\'T'T'T'f'\"\'-\_—\——\——\ | u'\,\ oo b b by
200 300 400 500 600 700 800 900 1000

sgrt(s) [GeV]

e At low energy Higgsstrahlung dominates

e At high energy the fusion cross section still grows
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§15- %
e A scan of the HZ threshold can de- 2 I i,.-fi
termine the quantum numbers (spin, g1 | S
parity) |/ e/
eFor Z — eTe , u"u~ the Higgs can > ! <o
be seen from the recoil-mass indepen- S
dent of its decays R
210 220 230 240 250
e This allows a model independent mea- /s, GeV
. 1 ¢ a
surement of the HZZ coupling and the w0 o ex
Higgs branching ratios g |
e The ttH couplings can be measured 2 ™ m,, = 120 Gev
from eTe™ — ttH g
o) 50% #
e Higes selt-couplings can be obtained 2 Mw
from double Higgs production z 5 #ﬂﬁ
0 ‘
100 160

Recoil Mass [GeV]
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Coupling-Mass Relation

This can show that the Higgs really 1
couples to mass

The branching ratios are also a sen-
sitive indicator for models beyond th
SM

e.g. a model with two Higgs-doublets
(SUSY):

e The two original Higgs particles
(Hy, H9) are responsible for the
masses of the up- and down-type

0.1

Coupling constant to Higgs boson

. o 130% [ [, @ T - — - W Z o H
fermions S e | -
= ;
. . 2 +10% cosa/sinf3
e The h is a mixture of Hy and Ho £ ™ | I _
5 0%(SM) R S (o Lot S :
e [ts couplings can be shifted w.r.t. z - sinto—p)

. . 20% sina/cosf3
the S M pfedlCthﬂ B Model Independent Analyses
-30%
LS. Yamashita (ACFA WS Taipei)
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What can CLIC contribute to the Higgs?

e The fusion cross section and the luminosity rise with energy
L1 very large Higgs statistics

[0 can measure rare decays like H — ™ p™ for small my; or H — bb for
large my with few % precision

250 —

1600 ;:'_‘
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[
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0 |
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MSSM Higgses

e At the LHC the heavy MSSM Higgses are only visible at low and high
tan 3

Visible SUSY—nggses at the LHC

S0

o ATEAS

= RN ﬁL;dt 300 fb :
30 o : Muk!mui‘muxmg )
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e At eTe™ colliders the heavy Higgses are visible up to (at least) /s/2

JS =500 (Gev) s=0.1(fb) J5 = 1000 (Gev) & = 0.1 (fb)

50 100 150 200 250 300 350 400 450 500 100 200 300 400 500 600
Mpa (Gev) M A (GeV)
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However also the precision measurements at 500 GeV are sensitive to the
heavier Higgses:

e The H| — Ho mixing angle depends on m and tan (3

e In the calculation of the h-fermion couplings tan 8 almost drops out

e [ispecially the down-type fermions are sensitive to mp

e There is sensitivity up to ma = 600 GeV

95/9,(SM)
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Example II: Top

e At lepton colliders top quarks are produced by ~ or Z s-channel ex-
change

e Because of the large top width there are no toponium resonances at

threshold

e The top mass can be measured to a precision of 50 — 100 MeV with a
threshold scan

o At LHC there are alwaysg | B

theoretical uncertainties in °© © | — default
osl.... — +beam spread

the top mass definition of I — speamstrahiung -
Y 1 Gev 0.6 :_ - +§|SR § ] ....... _:
e For a threshold scan also 043_ ..................... ..................... ................... ....... _f

the theoretical uncertain- b ]

ties are in the H0—100 MeV :

rall ge 330 335 340 345 350 355 360

\'s [GeV]
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Why is the top mass so important?

e [n models beyond the SM the Higgs mass(es) should be given by the
model

e However there are radiative corrections from the particles coupling to
the Higgs

e Because of the large Yukawa coupling the top corrections are of the
order AmH/Amt ~ 1 135_ - Heinemeyer et o

[1 a Higgs mass precision (much) better
than the top mass precision is almost
useless

Example: SUSY

e m can be calculated when my, and
tan 3 are known

125

m, [GeV]

theory prediction for m
dm°"" = 2.0 GeV
dm " =1.0 GeV

exp _

6mt =0.1 GeV

h

e This may only be possible with an ac-

Cul”ate mt 150 200 250 300 350 400 450 500
M, [GeV]
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Example I1I: SUSY

e The ILC tests smaller masses in SUSY (1/s/2)

e However it has many advantages

— All particles, especially the weakly interacting ones, are visible
— The known kinematics allows the reconstruction of the LSP
— The known initial state allows precise coupling measurements

e These precise measurements are needed to prove that the new particles
are really superpartners of the SM ones

e The combination of ILC and LHC is necessary to measure most of the
O(100) free parameters and to understand the mechanism of SUSY
breaking
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Mass measurements

e With direct reconstruction or threshold scans the masses of all accessible
particles can be measured

e This is also true for the LSP which is dificult to measure at the LHC
e Reconstruction of sfermion decay f — fxV:

— Decay is isotropic in rest frame
[] Fermion energy in lab frame flat with endpoints

p energy for eTe™ — [infip,

1200 Y. Martyn

\/s = 400GeV

+

Emiss

=5

+

=T

: 7.
L
55
5,5

b 1 m? R
f — (1:|:ﬁ) 1_m_;( BOOV
f I

E beam 2

400

O f- and y"-mass can be mea-
sured

120
lepton energy E, [GeV]
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— 200 T T T T T T T T

e 2nd method: threshold scans 2 " le L= 10" point

e Gauginos: threshold suppression o< 3 <
= good precision for mass measurement

150

e Using both methods all accessible particle
can be measured with typically < 0.1%
precision

e By combination with the LHC also the
precision of non-accessible particles can be
improved

100

50 -

0
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o
—B00 —
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SUSY and the unification of forces

e Masses and coupling constants can be extrapolated to high energies
e Their behaviour gives information about the unification of forces
e Small deviations are a hint for small corrections from string theory

B.C.Alanach et al
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Spin measurements

e To prove that it is SUSY it must be shown that the spin of the new
particles differs by 1/2

e This can be done e.g. with threshold scans

400 T T T T T

350 I T

300 I n
s F KK muons i

200 I T

150 T -

100 F smuons .

o (e+e- = XX) (fb)

5 r

380 400 420 440 460 480 500

Ecm (GeV)
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Coupling measurements

e An eTe™ collider can measure cross sections and asymmetries
e Measurements can be done for different beam polarisations

e With the different observables all involved couplings can be disentangled
e Example: eTe™ — &te™

A Freitas et al. hep—ph/03101:

0.03 \ AR 7
e V§ - 500 Gev . 68%c.l.
. | |
> r .
O — |
&) 0 |
S | ,
- [T !
N-0.010€" &= &8 ) > |
0.02} f j
o’ e> &8 ) |

20.004 -0.002 0  0.002 0.004
U(1) coupling
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Dark matter

e Depending on the scenario properties of different particles must be mea-
sured

e Only a lepton collider has the possibility to do this

e [t is very probable that such a machine is needed to understand if the
new particles found at the LHC account for the dark matter in the
universe

Dark matter dens

~0.2=

ity

P TR

R

n the easiest scenario Oh? in coannihilation region

C R T T T T
] LCC3
30 -

0.18

LHC+ILC—-1000

0.16

0.14

probability density dP/dx

RRRMEAAME~ RN A

0.12 |
0.1 Planck
0.08 R |
0.06 ALCPG cosmology group - Lccl
_l 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 |

| | | | |
86 88 90 92 94 96 98 100

102 104
M(y1) (GeV)

Physics at the LHC Lecture 14-11 Klaus Monig



What eTe™

energy is needed?

e Many scenarios
(e.g. focus point)
allow pretty high
masses

e A 1TeV collider
often only gets the
sleptons and the
(lighter) neutrali-
nos and charginos

eOnly a 3 — 5TeV
collider has a rea-
sonable  coverage
using present day
knowledge

Nb. of Observable Particles

CMSSM Benchmarks

mmm JlUINO meem SQUATKS mmm Sleptons e Xo’i H
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Example IV: Z’

e /.’ effects are visible much below the Z’ mass:

1
s—m22,+imZ/FZ/

— propagator p

— 7" exchange: o 1/p?
— interference with SM amplitude: o« 1/p
[1 mainly interference visible

L1 large sensitivity to helicity structure
e PEP and PETRA could already measure Z properties that way

e Measurement of cross sections and asymmetries gives access to vector-
and axial-vector-couplings separately

e Model dependent analyses:

—assume a given model [ all couplings are defined
— can use leptonic and hadronic events
— deviations from SM prediction translate directly into Z’-mass
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Model independent analyses:

e [[.C sensitive to normalised couplings

S
aﬁyza’f 5
mZ/_S

N / S

e [or leptons can obtain model independent limits/measurements on nor-
malised couplings

e All hadronic observables depend on product of leptonic couplings (Z'-
production) and hadronic couplings (Z’-decay)

[1 Can measure hadronic couplings only if leptonic couplings deviate sig-
nificantly from zero

Physics at the LHC Lecture 14-45 Klaus Monig



Ideal case: LHC discovers a Z’, so mass is known and ILC can measure
the couplings

— 2 1 ;
© | mmz)=1Tev J's =500 GeV
. M(Z')=2TeV 95% c.l.
M(Z')=3TeV :
. < c’ e Measure leptonic couplings
SLHq to few % my < 2TeV
LR | e Limits roughly stay con-
N, ... stant for m.1/+/s = const
- e The ILC can distinguish
i ; L S the models over basically
LH the full LHC discovery
i range
S. Godfrey et al.
_ | | | |
b5 0 0.5
Cr
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Conclusions

e There will be a need for new experiments atter the end of LHC
e LHC upgrades can solve some of the open problems
e However almost certainly an eTe™ linear collider will be needed

e The technology for a collider up to 1TeV exists, the technology for
3TeV is being developed

e The energy can only be decided once LHC results are there
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