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Why proton accelerators?

Reason to build LHC:

Want to reach high energies to discover new physics at TeV scale

Must accelerate stable charged particles!

Electrons:

e Point-like:
—well known initial state, including polarisation if needed

—whole energy goes into interaction
— full event in detector [ can use energy-momentum constraint

e No strong interactions:

— relatively small cross sections
— relatively equal cross sections for all processes LJ no large backgrounds

e [tlectrons are light;

E

4
—synchrotron radiation o< (=] /r [ limits energy in accelerator
Y m gy
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Protons:
e Protons are composite

—interaction unknown at
parton level

—1nteraction energy <
proton energy

— proton remnants disappear in the beampipe [ kinematics must be
reconstructed from the decay products

e Protons have strong interactions

— cross sections for production of strongly interacting particles are large

— useful for some signals

— huge QCD backgrounds

e Protons are heavy

—no significant energy loss
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Energy Frontier Accelerators in the Past

“Livingston plot”
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The LHC
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e pp-collider in the LEP tunnel at CERN (1=27 km)
o /s~ 14TeV
e Luminosity up to £ = 103%cm =251

Physics at the LHC Lecture 1-7 Klaus Monig



Detailed layout of the LHC

Low B (pp)
High Luminosity

RF
& Future Expt.
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CERN Accelerators

(not to scale)
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Start the protons out here
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Main challenge: need 9T magnets to reach desired energy

Solution: superconducting “2 in 1”7 magnets to save cost

Superconducting Coils

Spool Piece
Bus Bars

Quadrupole
Bus Bars

Protection
Diode

Heat Exchanger Pipe
Beam Pipe

Helium-Il Vessel

Superconducting Bus-Bar

Iron Yoke

Non-Magnetic Collars
Vacuum Vessel
Radiation Screen

Thermal Shield

The
15-m long
LHC cryodipole

Auxiliary
Bus Bar Tube

Instrumentation
Feed Throughs
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The LHC beams

e T'wo proton beams of E=7TeV each (now 3.5TeV)
e 2800 bunches/beam (now 300)

e 1.2 - 10" protons per bunch (almost reached)

[1 The total stored energy is 360 MJ per beam (now 19)
(This corresponds to a British aircraft carrier at 12 knots or a luxury
car at 2000 km /h)
However the energy of two colliding protons corresponds to the energy
of two colliding mosquitoes

e Beam size at IP: few cm long, 16pm wide
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The LHC timescale

e [irst discussions on the project: 1984

e Constructed in the LEP tunnel since 2001

e [ate 2009: first collisions at y/s = 0.8 TeV

e 2010 — 2011 Collisions at /s =7 — 8 TeV

e 2012 Upgrade to 14 TeV (maybe delayed to 2013)

e 2013 — 2019: Run with /s = 14TeV and luminosity from £ =
108em ™27 to £ = 103 em 27!
(one long shutdown (20167) forseen for detector upgrades)

e ~ 2020: luminosity upgrade to £ ~ 10%2em 2!
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The LHC problem(s)

e The magnets are powered in series with a splice connection between
the magnets

e The splices could only be connected in the tunnel and could not be
tested

e On September 19, 2008 a splice connection between two magnets
quenched

e This caused an electrical arc in the connection

e The arc boiled the local helium

e The gaseous helium could not be extracted fast enough and the shock-
wave caused some destruction at about 50 magnets

e All magnets repaired

e A new quench protection system can measure nf) resistence in the
splices to avoid this problem in future
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Remaining Problem: Bad connection between copper parts in the busbars

e In case of quench the current cannot completely flow through the copper
[1 Danger for the superconducting cable
e At present limits the beam energy to 3.5 TeV

e For 7'TeV new clamp connections may be needed = long shutdown

Gamma rays QBBI.B25R3-M3 before disconnection (QRL connection & QRL lyra sides)

Courtesy:
Christian Scheuerlein
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e In principle want to annihilate particles with antiparticles
e Generation of antiprotons is very expensive and limits luminosity
e At high energy PDFs anyway dominated by gluon and sea-quarks

[0 (almost) no difference between pp and pp cross sections

12 o 3 o

| 25

) 2_ . . W+/W- forpp—W

" 1'5__51P5—3*W} S i

XN 1—D{pplﬁ}r‘ﬁ) %o '...' .
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Cross sections at the LHC

Fermilab S8SC
CERN l LHCl
il

e Huge signal cross sections |
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e 25 pileup events/bunch crossing at high luminosity
e This means hundreds of tracks per bunch crossing

e Reconstruction program must filter out the interesting ones

Reconstructed tracks
with pt > 25 GeV
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Kinematic variables

e Livery particle can be characterised by 3 variables e.g. (p,d, @)

e pp collisions: longitudinal boost because of parton momentum differ-
ences

[] need longitudinal variable that gets only a constant shift:

- E+
— Rapidity: y = %m ( E_?I’!

—no particle id O use pseudorapidity (m=0) 7 = — In (tan g)
[] no interest in longitudinal momentum
—use py as estimator for

hardness of interaction

9=90°n=0
—common slang: Ey = py 6=1351n=-038 6=4%9n=0.388
measured by calorime-
0=17Pn=-24 0=100n=24
ters
0=17P n=-5.0 0=1n=5.0

e ¢ as azimuthal variable is
ok.
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Phase space is flat in cos 6
= eTe” observables are usually

shown in cos 6
Events at hadron colliders strongly
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Luminosity at the LHC

Luminosity defined as
dN r
a7
In terms of bunch sizes and charges £ can be calculated as
NTN™
L= feNp 1
TO 30y

Oy R 0oy ~ 15um Nt~ N~ ~ 101 fe~12000/s Ny =~ 2800

0 2010: £ < 10%2%cm 25!
0 2011: £ ~ 10%2cm 25!
e >2013: £ < 10% — 10°%em 251
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Luminosity measurement

Relative measurement:
e Measure rate of mimimum bias events with some subdetectors
Absolute measurement:

e Always calibrate relative measurement in spacial run, then use this.
e In the beginning use Van der Meer scans

— Scan beams wrt. each other to get beam size
— Beam charge from current
— At present 10% precision limited by charge measurement

e Next step Coulomb scattering

— Cross section known from theory

— Measure rate at very small scattering angles (~ 1cm at 240m) in
runs with special optics

— ~ 3% precision possible
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Performance of the LHC in 2010

e Machine started with few bunches and low current (£ ~ 10%7cm™2s™1)
in March to protect machine — minimum bias physics

e Higher bunch charge and more single bunches in summer (£ ~
10300m_28_1) — physics with low energy jets without pileup

e Now at trains with ~ 300 bunches and full current (£ > 10%%cm = 2s~1)
— ~ 2 pileup events per bunch-crossing

& A I B L L L DY (O 5 B B B B BRI~
" 4+ ATLAS Online Luminosity \s=7TeVv ] =3 = ATLAS Online Luminosity \s=7TeV =
T 10°g . T T 10°F =
£ . =[] LHC Delivered 3 % , =[] LHC Delivered 3
88 10 I§_ Peak Lumi: 2.1x 10 cm? s _§' .g 10 EE [ ] ATLAS Recorded
g 10°E ' g 10 E  Total Delivered: 39.5 b’ =
'g - _B' 1;5 Total Recorded: 36.0 pb* E;
= S canlb S 10"
E i e ;
x | £ 107k E
o 10—1 C_U _3: -
102 M ~ 10%E -
10° o P 1 P 1 [l R , 10_5_...|...|...|...|...|...|...§_
24/03 24/04 25/05 25/06 26/07 26/08 26/09 27/10 24/03 24/04 25/05 25/06 26/07 26/08 26/09 27/10
Day in 2010 Day in 2010
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Signatures for new physics at the LHC

e High p; objects (jets)
— LEP and Tevatron have excluded new physics up to 2> 100 GeV
[] expect energy of decay products from new particles above half this
energy
e Leptons
— leptons have no strong interactions [ not produced in QQCD back-
oround events
—weak interactions are democratic [1 leptons are a good indicator of
weakly decaying particles

e b-quarks

— b-quarks are suppressed in QCD jets which are largely gluons
— b-quarks are abundantly produced in weak decays at the Z scale

—every top decay contains a b-quark
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e Missing energy

— QCD events result only in visible particles (hadrons)

—neutrinos from weak decays give moderate missing energy

(O(50 GeV))

—if the decays of new particles involve the dark matter particle a huge
amount of energy can be missing

—since a very large energy from the proton remnants disappears in the
beampipe only the missing transverse momentum (missing Ey) can
be used as an indicator

FEyt(miss) = «ZZEZ sin 6, cos qbZ)Q + (X; F; sin 0; sin ¢Z)2
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Experiments at the LHC

Four large experiments at LHC

o ATLAS: multi-purpose experiment, mainly for searches at the energy
frontier

e CMS: same as ATLAS

e LHCh: B-physics (CP violation) experiment looking for forward pro-
duction

o ALICE: Experiment to measure quark gluon plasma
Two small experiments

e Totem: Total Cross Section, Elastic Scattering and Diffraction Disso-
ciation at the LHC, installed in the low angle region of CMS

o LHCE: Calorimetry in the very forward region of ATLAS to test
hadronic interaction models for cosmic air-showers
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ATLAS

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker
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Standard collider detector with barrel and two endcaps:

e Inner tracker for charged particle momentum measurement

e Surrounded by

SupercondUCting Muaon
COll Wlth B:2T Spectrometer

e Liquid Argon

electromagnetic iy
calorimeter
e Scintillating tile Hadronic
hadronic
. | Proton
calorimeter '

: e
[} L
it Neutron| J/ The dashed tracks
| o : Rl i are invisible to
2 ' the detector
L\

e Toroid system with
precision chambers
for muon :
momentum el
measurement

Electromagnetic e . /
Calorimeter = *Elattrons”
L] . # ; :
{Phaton; 11
Solenoid magnet PRI
Transition

1
Tracking r

http://atlas.ch

Physics at the LHC Lecture 1-29 Klaus Monig



The ATLAS Tracker

e Pixel detectors close to beam pipe for b-tagging
e Silicon strips for precision tracking

e Transition radiation tracker for electron id and to improve momentum

resolution

I R TRRRRINRRIENRNR
TN R CETTIT

e

21m

; \ Barrel semiconductor tracker
Pixel detectors

e Barrel fransition radiation tracker
i V End-cap transition radiation tracker

) End-cap semiconductor tracker
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The ATLAS calorimeters

e Lead/liquid Argon for electromagnetic
e ['e/ scintillating tiles for hadronic

e Relatively good spacial resolution allows reweighting procedures

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMEC)

LAr eleciromagnetic

barrel
LAr forward (FCal)

Physics at the LHC Lecture 1-31 Klaus Monig



Some numbers on ATLAS

e Size: 25m X 2bm x 46m
e Weight: 3000t
e > 100 million readout channels

e Angular coverage:

—tracking |n| < 2.5 (6 > 9°)
— calorimeters |n| <5 (0 > 1°)

Physics at the LHC Lecture 1-32 Klaus Monig



Some resolution plots

Data/MC comparison of missing energy

Resolution of total transverse energy resolution
9 40_| T I 1T I LI I T T T I 1T I LI I T T T I 1T I 1T I LI | T > T T T T T T T T | T T T T | T T T T | T T T T | T T T T
@) B QCD Jets @ ATLAS Preliminary
Q 35 © 1
- A SUSY - “
2 Data 2010 s =7 TeV
5 30 Ot % 10 Ldt=0.34 nb'™
2 0.
é 2 PA-T D 10t J]|<4.5

20

e Data
[ MC MinBias

GCW

[EEN
o
w

15

[EEN
o
N

s O
-|T|'|T|'|_|_|_|'|'|'|T|'| IIIII|T|] IIII|'|T|] IIIII|'|T| IIIII|T|] TTTIT

10

5

NI BN R | |
% 200 400 600

ce o b b b
00 1400 16001800 200
SE. (GeV)

e
Juss
me
L
—
IIIII|_|_|] IIII|_|_|_l| IIIII|_|,|,| IIIIII_I,II IIIII|_|,|,| 111l

10 20 30 40 50 60
ET® [GeV]

cl
800 100012

o

Physics at the LHC Lecture 1-33 Klaus Monig



Dimuon mass spectrum
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. . . . + —
e id-efficiency vs bg. rejection Z — e'e” mass spectrum
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Impact parameter distribution in data and

MC
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The ATLAS trigger

Challenge:

e Bunch crossing rate 40 MHz 3-level trigger

e Interaction rate 1 Hy e 1st level: special hardware

o Output rate ~ 100 Hy —reduces rate to 100 kHz
Interaction rate — defines regions of interest (ROI)
-1 GHz CALO MUON TRACKING
B h i
“rate 40 MHz e 2nd level: standard PCs
LEVEL 1 e o
THIGAER — gets data inside ROIs
<75 (100) kHz . .
Derandomizers - pl”OCeSSIIlg tlme 10 mS
Regions of Interest Readout drivers
(ROD=) —reduces rate to 1 kHz
1 e
s
o ? e Event filter: standard PCs
' Event bulder — access to full data
EVENT FILTER FuII-evea:tdbuffers B . t 1
~ 100 Hz processor sub-farms proceSSIHg 1me S

—reduces rate to 100 Hz

Data recording
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Trigger chains

Atlas triggers on muons and calorimeters in L1 + tracker in HLT
Standard Model triggers can have prescales to get rates down

Trigger slices (example for unprescaled triggers with £ = 10%3cm =271

® I11UO0I11S

— 2 muons with p > 15 GeV
— 1 muon with p > 20 GeV

® cgamina

— 1 isolated e with p > 25 GeV
— 2 isolated e with p > 15 GeV
—1 e with p > 105 GeV
—1 v with p > 150 GeV
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® jets
—1 jet with £ > 300 GeV
— 3 jets with £ > 100 GeV
—4 jets with £/ > 50 GeV
—total jet energy > 500 GeV
—total energy > 900 GeV

e Laus

— 1 tau with p > 150 GeV
— 2 isolated taus with p > 45 GeV

e missing [

— missing energy > 90 GeV
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View inside the toroid
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Installation of the forward calorimeters
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Endcap muon chambers and toroid
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The ATLAS collaboration

e ~ 2200 physicists
e from 170 institutes (Humboldt university, DESY HH and Zeuthen...)

e from 37 countries

f‘..&. .' =
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N i
Argentina Morocco %
«y

v Vs
Sin. N
Armenia Netherlands %4
Australia Norway ﬁ,‘i’ -
Austria Poland 4 B
Azerbaijan Portugal ‘
Belarus . Romania ’,
Brazil Russia ) Ly
Canada Serbia 4
Slovakia >

Chile

=
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Co ll.a’bOrfatioln
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_|_

Z — eTe” event (data)

15 E; (GeV)

R T B e Run Number: 154817, Event Number: 968871 E, (e)=45GeV E. (€*) = 40 GeV
AT LAS Date: 2010-05-09 09:41:40 CEST ()= 021 (e =038
M_=89 GeV

EXPERIMENT

Z>ee candidate in 7 TeV collisions
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A SUSY event in ATLAS (MC)
Example for a SUSY event

® SIX Jets
e two muons

e 280 GeV missing transverse energy

ATLAS Atlantis went: Susyevent ATLAS Atlantis Event: susyevent
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The concept is similar to ATLAS, however different in detail:

e All silicon tracker

e Larger coil with larger B-filed (4T)

[] better momentum resolution in the inner tracker

e Therefore no extra magnet for muons

e Crystal calorimeter with better energy and worse spacial resolution

e Hadron calorimeter with worse granularity doesn’t allow reweighting
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e Huge b-cross section, mainly in forward region
e Can be used to study CKM matrix and CP violation
e Advantages compared to eTe™ B-factories

— access to heavier B-states like Bg

— huge statistics gives access to rare decays like B — p ™
e Disadvantages compared to eTe™ B-factories

— large backgrounds form non-B events

— hadronic B-decays cannot be triggered

e LHCb optimised for forward region coverage, particle id and lepton
trigger
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ALICE

. High-Momentum
Particle g
Identification Particle
Time Detector Identification
Projection Detector
Chamber _

Absorber

s Dipole Magnet
Magnet

Muon Chambers

Photon
Inner Spectrometer zce
Tracking
System
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e The LHC can produce lead-lead collisions

e In the high energy density of the collision a quark-gluon plasma should
form

e [ts decay results in events with several thousand charged particles

e The analysis requires multiplicity measurement, lepton and photon ID
and the measurement of the jet substructure

e ALICE contains a large TPC for charged particle identification plus
some muon and photon detector and calorimetry

e Since mostly statistical properties are required no hermeticity is needed!
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A typical event in ALICE
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Computing at the LHC

Ballo
v (30 Km)
e The experiments each write out events with | _
200 Hz resulting in 7 Pb/year each f‘;j;ﬁm';’;ta_,
~ 20 K
e These data need to be reconstructed and anal- e
ysed &5
e For this the Grid paradigm will be used: et
— Computing centres are distributed over the !
oncorde
world (15 Km)

— Submitted jobs are processed anywhere where
the required resources are available

— This resembles the power grid where 1 also
don’t.k.now which power plant produced the ‘{':f_-sﬂfnf:;u
electricity I use .

.'-:._

e However for the large storage requirements a hi- &
erarchical structure is needed .

. F———

’. T ﬁ
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Grid hierarchy

Tier0: at CERN, receives all raw data and does the first path reconstruc-
tion.

Tierl: 11 around the world (Karlsruhe for Germany), receive 20% of the
raw data, mainly for reprocessing

Tier2: ~ 60 around the world, receive ~ 1/3 of the AODs each, respon-
sible for data analysis and simulation

Tier3: local installations at the collaborating institutes
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