Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

S-matrix approach to the Z resonance or: The Z resonance without weak loops or: The SMATASY/ZFITTER approach to the Z resonance

Tord Riemann, DESY Thanks to: M. Grünewald + S. Riemann

talk held at workshop "Matter To The Deepest" XXXIX International Conference on Recent Developments In Physics Of Fundamental Interactions September 13-18, 2015, Ustroń, Poland

http://indico.if.us.edu.pl/conferenceOtherViews.py?view=nicecompact&confId=2

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Present interest in precision approaches to the *Z* boson

Belle-II

 $\sqrt{s} \sim 10 \text{ GeV}$ \rightarrow **Belle-II** will measure $10^9 \ \mu^+\mu^-$ events See e.g. T.Ferber [1]

Fcc-ee

```
\sqrt{s} \sim M_Z

\rightarrow Fcc-ee expects 10<sup>13</sup> events at the Z resonance

See e.g. A. Freitas [2].

Much work on weak two-loop contributions to the Z resonance has been done by Hollik et al., Czakon et al.,

Freitas et al.

see [3] and many refs. therein.
```

```
Model-independent alternative: How to do?

\rightarrow Request by the Fcc-ee physics study group

\rightarrow S-matrix approach a la SMATASY/ZFITTER

See T.Riemann [4] 2015.
```

massive

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary ⊖O
Outline					

S-matrix approach to the Z line shape

- Developed as a model-independent analysis tool of $e^+e^- \rightarrow (\gamma, Z) \rightarrow f^+f^-$ around the *Z* boson resonance
- Aim: determinations of M_Z and Γ_Z
- $\rightarrow \sigma_T$: Leike/TR/Rose 1991 [5]
 - $\rightarrow A_{FB,LR,pol}$: TR 1992 [6],
 - → SMATASy code: Kirsch/TR 1994 [7]
- First application: LEP/L3 1993 [8], also: Tristan/TOPAZ, VENUS, LEP/OPAL, ...
- 1 Introduction
- 2 Total cross sections
- **3** Asymmetries
- 4 Applications
- **5** SMATASY/ZFITTER
- 6 Summary

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary ○O
Introduc	tion				
boson					

The reaction

$$e^+e^- \to (\gamma, Z) \to f^+f^- + (n\gamma)$$
 (1)

(2)

allows to study the *Z* boson, its mass M_Z , its width Γ_Z , its couplings, and potentially deviations from the Standard Model.

Need correct "model"

See experiences with *constant* and *s*-dependent Z width:

$$\frac{1}{[s - M_Z^2 + iM_Z \Gamma_Z(s)]} \quad \text{versus} \quad \frac{1}{[s - M_Z^2 + iM_Z \Gamma_Z]}$$

To a very good accuracy, it holds:
$$\Gamma_Z(s) pprox s/M_Z^2 imes \Gamma_Z$$

see next slide, → Bardin/Leike/Riemann/Sachwitz 1988 [9]; also: Berends/Burgers/Hollik/v.Neerven 1988 [10]

Need correct unfolding ..

.. of Realistic Observables in order to get Pseudo Observables. $\rightarrow e.g.:$ Borrelli/Consoli/Maiani/Sisto

4/19	v. 2015-10-02 12:27	Tord Riemann	S-matrix & Z line shape	July 2015, CALC, JINR, Dubna

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Lesson: The model influences numerical results

Fig. 1. Total cross sections $\sigma_{\rm B}$, $\sigma_{\rm R}^{\rm SD}$ for the reactions $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ in Born approximation (left scale) and including O(α) QED corrections right scale). Peaks of σ with energy-dependent width $\Gamma_Z(s)$ are shifted by 34 MeV to the left.

Total cross section for $e^+e^- \rightarrow \mu^+\mu^$ production at LEP ...

... without (left) and with (right) QED corrections. Both sample data produced with an energy-dependent *Z* width. The assumptions on the *Z*-propagator in the fit formulas influence the location of the peak, but not the "experimental errors". Fig.: from [9], license Number: 3557090997554.

	Born		Born + QED	
from fit: \rightarrow	Mz	Γ_Z	M_Z	Γ_Z
$\Gamma_Z(s)$	93.000 ± 0.013	2.498 ± 0.009	93.000 ± 0.016	2.498 ± 0.011
Γ_Z	92.966 ± 0.013	2.498 ± 0.009	92.966 ± 0.016	2.498 ± 0.011

Tord Riemann

S-matrix & Z line shape

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Introduction

Stuart 1991 [16], S-Matrix ansatz for $e^+e^- \longrightarrow Z \longrightarrow f^+f^-$

$$M = \frac{R}{s - s_0} + F(s), \quad s_0 = M_Z^2 - iM_Z\Gamma_Z$$
(3)

Allows to study:

- Mass M_Z and width $\Gamma_Z \rightarrow \text{Leike/Riemann/Rose 1991 [5]}$
- How many independent degrees of freedom? → Leike/Riemann/Rose 1991 [5], Kirsch/S.Riemann, L3 [17, 8]
- But also: How to define mass and width of the Z boson at higher orders of perturbation theory? → Denner 2014 [18], Freitas 2014 [3] and Fcc-ee [2], Degrassi FCC-ee [19] and refs. therein

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	●0000	00000	0000	0	0 0

Introduction	Total cross sections ●0000	Asymmetries	Applications	SMATASY/ZFITTER	Summary ○O
ZFITTER					

Total cross sections

There are immediate questions, from an experimental point:

- What about the photon exchange?
- What about QED corrections, e.g. the $2 \rightarrow 3$ part of the cross sections?
- What about asymmetries, besides σ_{tot} ?

We have to describe

v. 2015-10-02 12:27

$$e^+e^- \longrightarrow (\gamma, Z) \longrightarrow f^+f^-(\gamma)$$
 (4)

Ansatz in the complex energy plane, for four helicity matrix elements:

$$\mathcal{M}^{i}(s) = \frac{R_{\gamma}^{i}}{s} + \frac{R_{Z}^{i}}{s - s_{Z}} + F^{i}(s), \quad i = 1, \dots 4.$$
 (5)

Beware: Eqn. (5) is mathematically not consistent \rightarrow Böhm/Sato 2004 [20] The poles of \mathcal{M} have complex residua R_Z and R_γ , the latter corresponding to the photon, and the background F(s) is an analytic function without poles:

$$F^{i}(s) = \sum_{n=0}^{\infty} F^{i}_{n}(s - s_{0})^{n}$$
Tord Riemann
For Aller All

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	0000	00000	0000	0	0 0

Comment on the photon term (3 Feb 2015)

$$\frac{R_{\gamma}^{i}(s)}{s} = \frac{\sum_{n=0}^{\infty} R_{n}^{i}(s-s_{0})^{n}}{s}$$

$$= \frac{\sum_{n=0}^{\infty} R_{n}^{i}(s-s_{0})^{n}}{s_{0}-(s_{0}-s)}$$

$$= \sum_{n=0}^{\infty} R_{n}^{i}(s-s_{0})^{n} \frac{1}{s_{0}} \frac{1}{1-\frac{s_{0}-s}{s_{0}}}$$

$$= \sum_{n=0}^{\infty} R_{n}^{i}(s-s_{0})^{n} \frac{1}{s_{0}} \left[1+\frac{s_{0}-s}{s_{0}}+\left(\frac{s_{0}-s}{s_{0}}\right)^{2}\cdots\right]$$

The term $R_{\gamma}^{i}(s)/s$ is part of the the background term F(s).

- It is useful to sum up a selected part of the photonic background of the Z resonance in order to take explicit notice of physically known pieces of the input expressions.
- Compare: It is useful to sum up a selected part of self-energy insertions in the propagators in order to derive the Breit-Wigner resonance form.

(7)

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary ○O

Ansatz for realistic applications

The analysis of the Z line shape will be based here on the cross section

$$\sigma(s) = \sum_{i=1}^{4} \sigma^{i}(s) = \frac{1}{4} \sum_{i=1}^{4} s |\mathcal{M}^{i}(s)|^{2},$$
(8)

where the sum must be performed over four helicity amplitudes with different residua R_Z^i and functions $F^i(s)$. The result is, with QED corrections folded in:

$$\sigma_T(s) = \frac{4}{3}\pi\alpha^2 \int \frac{ds'}{s} \left[\frac{r^{\gamma}}{s} + \frac{sR + (s - M_Z^2)J}{(s - M_Z^2)^2 + M_Z^2\Gamma_Z^2} + \cdots \right] \rho_{ini}\left(\frac{s'}{s}\right).$$
(9)

The radiation connected with initial-final state interferences can be taken into account by an analogue formula to (9) with a slightly more complicated structure [21, 22]:

$$\sigma_{\rm int}(s) = \int ds' \sigma(s, s') \rho_{\rm int}(s'/s).$$
(10)

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary OO
ZFITTER					

The Standard Model analysis tool for the *Z* resonance: ZFITTER (D. Bardin et al.)

- · Complete electroweak radiative corrections;
- QED corrections by convolution: with some σ₀(s') beware: for initial-final state interferences with some σ₀(s, s');
- semi-analytical QED integrations;
- free choice of $\sigma_0(s')$ by user interfaces;
- Standard Model interfaces: four weak form factors ρ , κ_e , κ_f , κ_{ef} .

ZFITTER is well-tested, flexible, accurate and fast.

References

- ZFITTER has been published in CPC in 1990 [23], 2001 [24], 2006 [25].
- The actual Fortran package is v.6.44; version 6.42 is public in CPC program library, with CPC-licence.

• Beware: Gfitter/GSM (2007-2011) is an illegal clone of ZFITTER, available at http://zfitter-gfitter.desy.de/ and http://fh.desy.de/projekte/gfitter01/Gfitter01.htm. See also: http://zfitter.education, http://zfitter.com.

10/19	v. 2015-10-02 12:27	Tord Riemann	S-matrix & Z line shape	July 2015, CALC, JINR, Dubna

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	00

Some details

See [26]

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Born Asymmetries

On a Sunday in Summer 1992, I had a discussion with Luciano Maiani in the CERN library. He had doubt that, for asymmetries, an analogue to the model-independent ansatz for σ_{tot} might be usefully formulated, especially in view of the QED corrections.

I believed one can do that, and I followed the rule "The proof of the pudding is in the eating" [6]. The result:

$$A^{Born}(s) = A_0 + A_1 \left(\frac{s}{M_Z^2} - 1\right) + A_2 \left(\frac{s}{M_Z^2} - 1\right)^2 + \dots$$
(11)

$$A_{FB} = \frac{\sigma_{FB}}{\sigma_T}, \qquad A_{pol} = \frac{\sigma_{pol}}{\sigma_T}.$$
 (12)

The A_{FB} and A_{pol} are helicity combinations as also σ_T is, i.e. have also S-matrix ansatzes. The parameters in $A^{Born}(s)$ are in [QED-]Born approximation:

$$A_0 = \frac{R_A}{R_T},\tag{13}$$

and

$$A_1 = \left[\frac{J_A}{R_A} - \frac{J_T}{R_T}\right] A_0. \tag{14}$$

S-matrix & Z line shape

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Some details

See [26]

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

QED corrections for asymmetries

QED corrections to asymmetries lead to few simple correction factors [6, 7]:

$$A_{LR}^{QED}(s) = A_{0,LR}^{Born} + c_{1,T}(s) A_{1,LR}^{Born} \left(\frac{s}{M_Z^2} - 1\right) + \cdots$$
 (15)

$$A_{FB}^{QED}(s) = c_{0,FB}(s) A_{0,FB}^{Bom} + c_{1,FB}(s) A_{1,FB}^{Bom}\left(\frac{s}{M_Z^2} - 1\right) + \cdots$$
(16)

The A_0 and A_1 are constant, and the same as in Born approximation. The QED corrections are contained in the model-independent factor C(s).

$$c_{0,FB}(s) = \frac{C_{FB}^{R}}{C_{T}^{R}}, \qquad c_{0,T}(s) = 1$$
 (17)

$$c_{1,A}(s) = c_{0,A} \frac{C_T^J}{C_T^R}$$
 (18)

Sample QED factor

v. 2015-10

$$C_{T,FB}^{R}(s) = \int dk \ \rho_{T,FB}(s'/s) \frac{s'R}{sR} \frac{(s-M_{Z}^{2})^{2} + M_{Z}^{2}\Gamma_{Z}^{2}}{(s'-M_{Z}^{2})^{2} + M_{Z}^{2}\Gamma_{Z}^{2}}$$
(19)

14/19

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Scetch of derivation of the expression for $A_{FB}(s)$ with QED corr's

See [26]

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

QED corrections for asymmetries

Figure 1 : The forward-backward asymmetry for the process $e^+e^- \rightarrow \mu^+\mu^-$ near the *Z* boson peak. From Kirsch/Riemann 1994 [7], license Number: 3557090997554.

Introduction	Total cross sections	Asymmetries	Applications ●○○○	SMATASY/ZFITTER	Summary OO
Applicatio	ons				

In Leike/S.Riemann/Riemann 1992 [27] correlations are discussed.

For the *Z* **peak position** *s*_{peak}, one may derive the relation:

$$\Delta \sqrt{s_{peak}} = \Delta M_Z + \frac{1}{4} \frac{\Gamma_Z^2}{M_Z} \Delta \left(\frac{J_T}{R_T}\right) + \dots$$
(20)

between an uncertainty in M_Z and an uncertainty in the γZ interference. The latter also influences A_1 .

Similarly, for a **hypothetical heavy gauge boson** Z', the effects from its virtual exchange transform after a partial fraction decomposition into simple shifts of the γZ interferences [27]:

$$\Delta\left(\frac{J_T}{R_T}\right) = -2\frac{g'^2}{g^2}\frac{M_{Z'}^2}{M_{Z'}^2 - M_Z^2}\frac{(a_e a'_e + v_e v'_e)(a_f a'_f + v_f v'_f)}{(a_e^2 + v_e^2)(a_f^2 + v_f^2)},$$
(21)

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary OO

Correlations: L3 at LEP1, 1993

Table 1

Results of the S matrix fit to total cross-sections and forward-backward asymmetries: (a) all parameters except the photon exchange are left free; (b) in addition the γZ interference terms are fixed to the Standard Model expectation.

Parameter	Case (a)	Case (b)
\overline{m}_{Z} (GeV)	91.152 ± 0.015	91,160 ± 0.010
$\overline{\Gamma}_{Z}$ (GeV)	2.494 ± 0.012	2.492 ± 0.012
ricp	0.141 ± 0.002	0.140 ± 0.002
lep	0.032 ± 0.064	fixed to 0.0058
rep	0.004 ± 0.001	0.004 ± 0.001
lep	0.674 ± 0.087	0.675 ± 0.087
rhad	2.859 ± 0.030	2.855 ± 0.029
j had	0.720 ± 0.700	fixed to 0.219

Table 2

Results of the S matrix fit to total cross-sections, forwardbackward asymmetries and r polarization: (a) all parameters except the photon exchange are left free; (b) in addition the hadronic 7Z interference terms for the total crosssection are fixed to the Standard Model expectation.

Parameter	Case (a)	Case (b)
$ \frac{\overline{m}_{Z} \text{ (GeV)}}{\overline{\Gamma}_{Z} \text{ (GeV)}} \\ R_{Z}^{\text{kep0}} \\ R_{Z}^{\text{kep1}} \\ R_{Z}^{\text{kep2}} \\ R_{Z}^{\text{phad}} $	91.155 \pm 0.013 2.494 \pm 0.012 0.429 \pm 0.012 -0.370 \pm 0.003 0.323 \pm 0.016 2.860 \pm 0.030	91.160 \pm 0.010 2.492 \pm 0.012 0.429 \pm 0.012 -0.370 \pm 0.003 0.323 \pm 0.016 2.856 \pm 0.029
jhad jtot	0.620 ± 0.620	fixed to 0.219
$m_{Z} (GeV)$ $F_{Z} (GeV)$ \widehat{g}_{a}^{lep} \widehat{g}_{a}^{lep} $\widehat{sin}^{2} \widehat{\theta}_{W}$	$\begin{array}{l} 91.189 \ \pm 0.013 \\ 2.495 \ \pm 0.012 \\ -0.037 \ \pm 0.010 \\ -0.4991 \pm 0.0019 \\ 0.2317 \pm 0.0037 \end{array}$	$\begin{array}{r} 91.194 \ \pm \ 0.010 \\ 2.493 \ \pm \ 0.012 \\ -0.037 \ \pm \ 0.010 \\ -0.4988 \pm \ 0.0019 \\ 0.2316 \pm \ 0.0037 \end{array}$

From: L3-Collaboration, "An S matrix analysis of the Z resonance", Phys. Lett. B315 (1993) 494-502. See also LEPEWWG et al., Phys. Rept. 2006, section 2 [28]

and LEPEWWG et al., Phys. Rept. 2013, App. A [29]

18/19

S-matrix & Z line shape

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Correlations: LEP1 + LEP2

A complete analysis of the LEP-2 data in terms of J_{had}^{tot} is lacking. But see K. Sachs, 2003 [30].

Including more measurements from LEPII solves this problem, reducing the correlation. The final result of $M_Z = 91$ 186.6 \pm 2.3 MeV ⁸ is in very good agreement with the result of the standard lineshape fit $M_Z = 91$ 187.6 \pm 2.1 MeV ⁹ with only slightly increased error.

Figure 2: Correlation between the mass of the Z and $j_{\rm had}^{\rm ot}$. Results are shown for LEPI data only and for a combined fit to LEPI and LEPII data. The yellow band indicates the 1 σ error from the 9 parameter fit.

Figure 2 : K. Sachs, "Standard model at LEP II", talk held at Moriond 2001, fig. 2 [30]

ntroduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	0	0 0

Correlations: LEP1 + TRISTAN

LEP experiments use cross-section and forward-backward asymmetry results from $\sqrt{s} \sim M_Z$ and LEP II. OPAL and L3 have reported preliminary results which are given in Table 1, and are compared to the value obtained by VENUS [9] using data at $\sqrt{s} \sim 60$ GeV and preliminary

Expt	Data	$j_{\rm had}^{\rm tot}$
L3:	LEP I + LEP II	0.30 ± 0.10
OPAL:	$\mathrm{LEP}~\mathrm{I} + \mathrm{LEP}~\mathrm{II}$	0.21 ± 0.12
VENUS:	VENUS + LEP I	0.20 ± 0.08

Table 1: Measurements of j^{tot}_{had}

LEP I S-Matrix results. The results are consistent with each other, and with the SM prediction $j_{had}^{tot} = 0.22$.

Figure 3 : P. Holt, "Fermion pair production above the Z^0 resonance", talk held at HEP 2001, table 1 [31]

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary
00000	00000	00000	0000	•	00

Fortran programs: ZPOLE - ZUSMAT - SMATASY/ZFITTER

ZPOLE – The stand-alone Fortran test package (Leike/Riemann, v.0.5, July 1991) is available on request. It was used for the numerics of [5].

ZUSMAT ... the S-Matrix interface of older ZFITTER versions. ZUSMAT was used for analysing the total cross sections, but could not treat asymmetries.

SMATASY/ZFITTER – With interface package **SMATASY** one has the full functionality of **ZFITTER** corrections [24, 25, 32].

The actual Fortran program for the S-matrix *Z* line shape approach:

M. Grünewald, S. Kirsch, T. Riemann 1994 [7] SMATASY v.6.42.01 = SMATA642 (2 June 2005) available at https://gruenew.web.cern.ch/gruenew/smatasy.html

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary ●O
Summarv					

- The S-matrix approach is absolutely independent of the Standard Model approach.
- The degrees of freedom for σ_{tot} are, at minimum: M_Z
 - Γ_Z
 - *R* the residue of the *Z* resonance, *per scattering channel*
 - J the value of the γZ interference, per scattering channel
- So we have at least four degrees of freedom. This deserves at least five data points as a function of *s*.

See also: M.Grünewald, S.Kirsch 1993 [33].

- Asymmetries may be described as well as σ_{tot} .
- For a exact numerical analysis of data, an accurate description of QED corrections is mandatory. This has been realised by combining SMATASY with ZFITTER.
- With so much more statistics at the Fcc-ee compared to LEP-1 and LEP-2:

The S-matrix approach might gain at the Fcc-ee even more interest as an alternative to the Standard Model approach.

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary O
Deferreres					

References I

- T. Ferber, Towards First Physics at Belle II. Talk at Spring Conference of DPG, 9-13 March 2015, Wuppertal, Germany. http://www.staff.uni-giessen.de/~gdl472/belle/dpg2015_torbenferber.pdf.
- [2] A. Freitas, About projected theory uncertainties. Talk at the 2015 Pisa Fcc-ee meeting, https://agenda.infn.it/conferenceOtherViews.py?view=standard&confId=8830.
- [3] A. Freitas, Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson, JHEP 1404 (2014) 070. arXiv:1401.2447, doi:10.1007/JHEP04(2014)070.
- [4] T. Riemann, S-matrix approach to the Z line shape A reminiscence. Prospects? Talk at the 2015 Pisa Fcc-ee meeting, https://agenda.infn.it/getFile.py/access?contribId=6&sessionId=7&resId=0&materialId=slides&confId=8830.
- [5] A. Leike, T. Riemann, J. Rose, S matrix approach to the Z line shape, Phys. Lett. B273 (1991) 513–518. arXiv:hep-ph/9508390, doi:10.1016/0370-2693(91)90307-C.
- [6] T. Riemann, Cross-section asymmetries around the Z peak, Phys. Lett. B293 (1992) 451–456. arXiv:hep-ph/9506382, doi:10.1016/0370-2693 (92) 90911-M.
- S. Kirsch, T. Riemann, SMATASY: A program for the model independent description of the Z resonance, Comput. Phys. Commun. 88 (1995) 89–108. arXiv:hep-ph/9408365, doi:10.1016/0010-4655 (95) 00016-9.
- [8] L3 collab., O. Adriani, et al., An S matrix analysis of the Z resonance, Phys. Lett. B315 (1993) 494–502. doi:10.1016/0370-2693(93)91646-5.
- [9] D. Y. Bardin, A. Leike, T. Riemann, M. Sachwitz, Energy Dependent Width Effects in e⁺e⁻ Annihilation Near the Z Boson Pole, Phys. Lett. B206 (1988) 539–542. doi:10.1016/0370-2693(88)91625-5.
- [10] F. A. Berends, G. Burgers, W. Hollik, W. van Neerven, The Standard Z Peak, Phys. Lett. B203 (1988) 177. doi:10.1016/0370-2693(88)91593-6.
- [11] A. Borrelli, M. Consoli, L. Maiani, R. Sisto, Model Independent Analysis of the Z Line Shape in e⁺e⁻ Annihilation, Nucl. Phys. B333 (1990) 357. doi:10.1016/0550-3213 (90) 90042-C.

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary O
Referenc	es II				

- [12] D. Y. Bardin, G. Passarino, The standard model in the making: Precision study of the electroweak interactions, International series of monographs on physics, 104 (Oxford University Press, 1999). http://www.amazon.de/Standard-Model-Making-Interactions-International/dp/019850280X/ref=sr_1_1?ie=UTF8&qid= 1422902184sr=8-l&kevwords=bardin+bassarino.
- D. Bardin, M. Grünewald, G. Passarino, Precision calculation project report. arXiv:hep-ph/9902452.
- [14] G. Passarino, Pseudo versus realistic observables: All that theories can tell us is how the world could be, talk at 'Workshop on Electroweak Precision Data and the Higgs Mass', DESY, Zeuthen, Feb. 28 - March 1, 2003 137–146. http://www-library.desy.de/preparch/desy/proc//proc03--01/14.ps.gz.
- [15] G. Passarino, Higgs CAT, Eur. Phys. J. C74 (2014) 2866. arXiv:1312.2397, doi:10.1140/epjc/s10052-014-2866-7.
- [16] R. G. Stuart, Gauge invariance, analyticity and physical observables at the Z⁰ resonance, Phys. Lett. B262 (1991) 113–119. doi:10.1016/0370-2693 (91) 90653-8.
- [17] S. Kirsch, S. Riemann, A Combined Fit to the L3 Data Using the S-Matrix Approach (First Resultats), L3 note 1233, 1992. http://l3.web.cern.ch/l3/note/notes1992.html.
- [18] A. Denner, J.-N. Lang, The Complex-Mass Scheme and Unitarity in perturbative Quantum Field Theory, Eur. Phys. J. C75 (8) (2015) 377. arXiv:1406.6280, doi:10.1140/epjc/s10052-015-3579-2.
- G. Degrassi, Precision observables in the Standard Model: a reexamination. Talk at the 2015 Pisa Foc-ee meeting, https://agenda.infn.it/conferenceOtherViews.py?view=standard&confId=8830.
- [20] A. R. Böhm, Y. Sato, Relativistic resonances: Their masses, widths, lifetimes, superposition, and causal evolution, Phys. Rev. D71 (2005) 085018. arXiv:hep-ph/0412106, doi:10.1103/PhysRevD.71.085018.
- [21] D. Y. Bardin, M. S. Bilenky, A. Chizhov, A. Sazonov, O. Fedorenko, T. Riemann, M. Sachwitz, Analytic approach to the complete set of QED corrections to fermion pair production in e+e - annihilation, Nucl. Phys. B351 (1991) 1–48. arXiv:hep-ph/9801208, doi:10.1016/0550-3213 (91) 90080-H.

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary O
Deference	- III				

References III

- [22] D. Y. Bardin, M. S. Bilenky, A. Chizhov, A. Sazonov, Y. Sedykh, T. Riemann, M. Sachwitz, The convolution integral for the forward backward asymmetry in e⁺e⁻ annihilation, Phys. Lett. B229 (1989) 405. doi:10.1016/0370-2693(89)90428-0.
- [23] D. Y. Bardin, M. S. Bilenky, T. Riemann, M. Sachwitz, H. Vogt, P. C. Christova, DIZET: A program package for the calculation of electroweak one loop corrections for the process e⁺e⁻ → f⁺f⁻ around the Z⁰ peak, Comput. Phys. Commun. 59 (1990) 303–312. doi:10.1016/0010-4655 (90) 90179-5.
- [24] D. Bardin, M. Bilenky, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, ZFITTER v.6.21: A semi-analytical program for fermion pair production in e⁺e⁻ annihilation, Comput. Phys. Commun. 133 (2001) 229–395. arXiv:hep-ph/9908433, doi:10.1016/S0010-4655(00)00152-1.
- [25] A. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. Grünewald, K. Mönig, S. Riemann, T. Riemann, ZFITTER: A Semi-analytical program for fermion pair production in e⁺e⁻ amihilation, from version 6.2, 10 version 6.42, Comput. Phys. Commun. 174 (2006) 728–758. arXiv:hep-ph/0507146, doi:10.1016/j.cpc.2005.12.009.
- [26] T. Riemann, S-matrix approach to the Z line shape. Talk at CALC2015, JINR, Dubna, Russia, July 2015, https://indico.cern.ch/event/368497/session/7/contribution/59/attachments/1134075/1622013/02_ riemann-tord-cal2015.pdf.
- [27] A. Leike, S. Riemann, T. Riemann, Z Z-prime mixing and radiative corrections at LEP-1, Phys. Lett. B291 (1992) 187–194. arXiv:hep-ph/9507436, doi:10.1016/0370-2693(92)90142-Q.
- [28] ALEPH collab., DELPHI collab., L3 collab., OPAL collab., SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael, et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257–454. arXiv:hep-ex/0509008, doi:10.1016/j.physrep.2005.12.006.
- [29] ALEPH collab., DELPHI collab., L3 collab., OPAL collab., LEP Electroweak Working Group, S. Schael, et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119–244. arXiv:1302.3415, doi:10.1016/j.physrep.2013.07.04
- [30] K. Sachs, Standard model at LEP II, Proc. of XXXVIII Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, March 15-22, 2003. arXiv:hep-ex/0307009.

Introduction	Total cross sections	Asymmetries	Applications	SMATASY/ZFITTER	Summary O

References IV

- [31] P. Holt, Fermion pair production above the Z⁰ resonance, PoS HEP2001 (2001) 115. http://pos.sissa.it/archive/conferences/007/115/hep2001_115.pdf.
- [32] A. Akhundov, A. Arbuzov, S. Riemann, T. Riemann, The ZFITTER project, Phys. Part. Nucl. 45 (3) (2014) 529–549. arXiv:1302.1395, doi:10.1134/S1063779614030022.
- [33] M. Grünewald, S. Kirsch, A Possible modification of a LEP energy scan for an improved determination of Z boson parameters, submitted to: Z. Phys. C, KEK scan http://www-lib.kek.jp/cgi-bin/img_index?9402241.