
6. Moment equations for radiation

6.1 Conservation equations

Instead of solving the full radiation transport equation one may be content with knowing the

moments of the radiation field, much like hydrodynamics is often preferred over kinetic theory.

We already know the zeroth moment of the specific intensity, the mean intensity of differential

energy density.
∮

Iν dΩ = c uν = 4π Jν (6.1)

Rather than velovity moments we would now be interested in angular moments such as the

net flux of radiation. For that purpose we must recall that Eq.5.1, though written as a scalar

expression, tacitly involves the direction of the radiation, ~ek. The intensity Iν refers to the

energy transfer through an area element with unit normal ~ek, i.e. perpendicular to the direction

of radiation. As observers, however, we might be interested in the energy transport rate through

a fixed area element with unit normal ~en. The net flux through the area element d~An would

then be

Fν,~en
=

∮

dΩ Iν ~en ·~ek =
∫ 2π

0
dφ

∫ 1

−1
d cos θk cos θk Iν(φ, θk) (6.2)

using ~en as the polar axis of the coordinate system. The unit normal ~en can be pulled out of

the integral, and hence what we have written is only the projection of a general flux vector

~Fν =
∮

dΩ Iν ~ek (6.3)

In the same line of thought the second moment would be the monochromatic pressure tensor

c Pν,n,m = c

∮

dΩ Iν (~en ·~ek) (~em ·~ek) Pν =
∮

dΩ Iν ~ek ~ek (6.4)

Let us now calculate the zeroth angular moment of the radiation transport equation

1

c

∂Iν

∂t
+~ek ·

~∇ Iν = jν − αν Iν − Iν

∮

dΩ′ σ(Ω, Ω′) +
∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω)

Using that ~ek commutes with ~∇ we obtain

∂uν

∂t
+ ~∇ ·

∮

dΩ Iν ~ek =

∮

dΩ jν −

∮

dΩ αν Iν −

∮

dΩ Iν(Ω)
∮

dΩ′ σ(Ω, Ω′) +
∮

dΩ′ Iν(Ω
′)

∮

dΩ σ(Ω′, Ω)

⇔
∂uν

∂t
+ ~∇ · ~Fν =

∮

dΩ jν −

∮

dΩ αν Iν

isotropy
= 4π jν − αν c uν (6.5)
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We have thus derived an equation similar to the mass conservation equation in hydrodynamics.

For isotropic radiation coefficients the first-order equation would read

1

c

∂~Fν

∂t
+ c ~∇ · Pν = −κν

~Fν = −(αν + σ) ~Fν = −

(

αν +
∮

dΩ′ σ(Ω, Ω′)
)

~Fν (6.6)

As in hydrodynamics we have the problem that with each new equation we get a number of

new variables, so the problem is underdetermined and we need closure relations. These closure

relations are very difficult to derive. Let us now study an approximation that is applicable to

high-opacity situations.

6.2 The radiation conduction approximation

Inside a star the photon mean free path

lν =
1

κν

≈ 1 cm ≪ R∗ (6.7)

Therefore the optical depth to the surface of a star is extremely high, so thermodynamic

equilibrium should be established and the radiation field must be isotropic and a Planckian

with the temperature of the ambient matter. Let us calculate the differential energy density,

energy flux, and pressure tensor for these conditions.

Iν ≃ Bν(T ) ⇒ uν ≃
4π

c
Bν(T ) ~Fν ≃ 0 Pν ≃

4π

3 c
Bν(T ) (δij) (6.8)

⇒ Pν ≃ Pν (δij) with Pν =
1

3
uν (6.9)

let us now compare with the moment equations for isotropic radiation coefficients, Eqs. 6.5

and 6.6, where we note that in 6.5 we can probably neglect the explicit time derivative because

∂uν

∂t
≈

uν

t⊙
≈

uν

t⊙

c

c
lν αν =

lν

c t⊙
αν c uν ≪ αν c uν (6.10)

where t⊙ is the evolution time of the sun. Similarily we may neglect 1

c

∂ ~Fν

∂t
in Eq.6.6, which then

writes

Eq.6.6 ⇒ c ~∇ · Pν ≃ −κν
~Fν (6.11)

Using Eq.6.9 we then obtain

~Fν ≃ −
4π

3 κν

∂Bν(T )

∂T
~∇T (6.12)

The total, frequency-integrated radiation flux can then be written

~Frad ≃ −
4π

3
(~∇T )

∫ ∞

0
dν

1

κν

∂Bν(T )

∂T
= −

4π

3 κR

∫ ∞

0
dν

∂Bν(T )

∂T
(6.13)
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where we have defined the Rosseland mean opacity

κR ≡

∫ ∞

0 dν ∂Bν (T )

∂T
∫ ∞

0 dν 1

κν

∂Bν (T )

∂T

(6.14)

Since we know
∫ ∞

0
dν

∂Bν(T )

∂T
=

d

dT

∫ ∞

0
dν Bν(T ) =

c

4π

du(T )

dT

⇒ ~Frad ≃ −
c

3 κR

~∇u(T ) = −
c

3 κR

~∇(a T 4) (6.15)

Eq.6.15 has the general form of a diffusion equation with diffusion coefficient D, it follows Fick’s

law

(diffusive flux) = −D~∇(density of diffusing medium)

Here the radiative diffusion coefficient would be

D =
c

3 κR

=
c lR

3
(6.16)

This diffusive random walk implies that the energy transport by radiation in stars is slow, for

the timescale of diffusive transport to the stellar surface is much larger than the timescale for

free escape, τfree.

τdif ≃
R2

∗

D
= 3

R∗

lR

R∗

c
= 3

R∗

lR
τfree ≫ τfree (6.17)

The absorption of radiation with a net flux corresponds to a momentum transfer to the ambient

medium and hence to a radiative force. Using 6.12 we obtain for the radiative force per unit

volume

~frad =
1

c

∫ ∞

0
dν κν

~Fν ≃ −
4π

3 c
(~∇T )

∫ ∞

0
dν

∂Bν(T )

∂T
= −

1

3
~∇u(T ) = −~∇Prad (6.18)
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