
5. Radiation transport

Reading: Shu, Vol.I, Ch.1 and Ch.3

5.1 The radiation transport equation

Being equipped with techniques to describe non-relativistic matter we now turn our attention

to radiation. We know that in many cirumstances we can use classical optics, i.e. describe

radiation as freely propagating rays and waves or photons when interacting with matter. We

also know that when interactions with individual photons are concerned, such as the emission

or absorption of photons by atoms, a quantummechanical treatment is needed.

Let us first define a few quantities. Assume a area element dA perpendicular to incoming

radiation. All rays through dA, whose direction is within the solid angle element dΩ, transport

the energy dE through dA in the time interval dt and frequency interval dν. We define

Iν =
dE

dA dt dν dΩ
specific intensity (5.1)

Averaging over solid angle yields

Jν =
1

4π

∮

Iν dΩ mean intensity (5.2)

The energy density spectrum per solid angle element then is

uν(Ω) =
dE

dV dν dΩ
=

dE

c dt dA dν dΩ
=

Iν

c
(5.3)

And the total energy density spectrum

uν =
∮

uν(Ω) dΩ =
∮

Iν

c
dΩ =

4π

c
Jν (5.4)

How do these quantities compare with the notion of a photon distribution function for spin

state i? Using p = hν/c we obtain

∑

i

fi(~x,~p, t) =
∑

i

dNi

d3x d3p
= uν(Ω)

dν

E p2 dp
=

Iν

c

c3

hν (hν)2 h

⇒ Iν =
h4 ν3

c2

∑

i

fi(~x,~p, t) (5.5)

In thermodynamic equilibrium the radiation field should be a black-body or Planck spectrum.

Planck Iν = 2
h ν3

c2

1

exp
(

hν

kT

)

− 1
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or because the blackbody emission is unpolarized (
∑

→ factor 2 for two polarization directions).

fi(~x,~p, t) =
1

h3

1

exp
(

hν

kT

)

− 1
=

1

h3
ni(~x,~p, t) (5.6)

where ni is called the photon occupation number.

If radiation passes through matter, its specific intensity may change. Energy may be added

by emission or taken from the radiation field by absorption processes. Using dV = dA ds with

pathlength element ds let us define the spontaneous emission coefficient as

jν =
dE

dV dt dν dΩ
=

dE

ds dA dt dν dΩ
=

dIν

ds
(5.7)

For the absorption let us visualize an ensemble of particles with density n, each of which blocks

the radiation over a area σ. The total absorbing area in a test volume then is dAa = n σ dA ds.

The absorbed energy is

dE = Iν dAa dΩdtdν = −dIν dA dΩdtdν ⇒ dIν = −nσ Iν ds = −αν Iν ds = −Iν dτ

(5.8)

where we define the absorption coefficient αν and the optical depth τ as

αν = nσ τ =
∫ s

s0

αν ds dτ = αν ds (5.9)

In total we have derived the radiation transport equation without scattering

dIν

ds
= jν − αν Iν or

dIν

dτ
= Sν − Iν mit Sν =

jν

αν

(5.10)

In practice jν and αν are the sums of the respective coefficients for all radiation processes.

The quantity Sν is called the source function. The radiation transport equation has the formal

solution

Iν(τ) = Iν(0) exp(−τ) +
∫ τ

0

dτ ′ Sν(τ
′) exp(−τ + τ ′) (5.11)

If the source function is a constant, then

Iν(τ) = Iν(0) exp(−τ) + Sν [1 − exp(−τ)]

⇒ Iν '

{

Iν(0) + jν s for τ � 1 optically thin
Sν for τ � 1 optically thick

(5.12)

In an optically thick situation we obviously have Iν = Sν, whereas in optically thin conditions

the intensity is determined by the emission coefficient, so we expect the spectrum to change at

the frequency where the system transitions from being optically thick to optically thin.

2



Example: let us consider two regions on the line-of-sight with different properties τi and Sν,i,

where I will use index 1 for the background region and index 2 for the foreground. Let us ignore

irradiation from behind the background system, that is we set Iν(0) = 0. The intensity at the

front of the background system, Iν(τ1), is then given by (5.12),

Iν(τ1) = Sν,1 [1 − exp(−τ1)] (5.12a)

To reach the observer, this intensity still has to pass through cloud 2, where it will be subject

to absorption with optical depth τ2, so the observer see from cloud 1

Iν(cloud 1) = Sν,1 exp(−τ2) [1 − exp(−τ1)] (5.12b)

In addition to this, the observer will measure the emission of cloud 2, which we can simply add

to that of cloud 1, because the radiation transport equation is linear. The observed emission

of cloud 2 is also given by (5.12) as

Iν(cloud 2) = Sν,2 [1 − exp(−τ2)] (5.12c)

so the total intensity is the sum of (5.12b) and (5.12c).

Iν(τ1 + τ2) = Sν,2 [1 − exp(−τ2)] + Sν,1 exp(−τ2) [1 − exp(−τ1)] (5.12d)

It is instructive to ask yourself what the asymptotic cases would be. If τ2 >> 1, then emmision

from cloud 1 would be fully absorbed and it would probably beinvisible, so we only see cloud

2 under optically thick conditions, and Iν(τ1 + τ2) ' Sν,2.

If τ2 << 1, then we have two cases, τ1 << 1 and τ1 >> 1. If τ1 << 1, then the entire system

is optically thin, absorption plays no role, and

Iν(τ1 + τ2) ' Sν,2 τ2 + Sν,1 τ1 for τ1 << 1 and τ2 << 1

If τ1 >> 1, then the background system is optically thick and

Iν(τ1 + τ2) ' Sν,2 τ2 + Sν,1 for τ1 >> 1 and τ2 << 1

Considering that generally both the source functions, Sν, and the optical depths, τ , are

frequency-dependent, we must expect spectral changes at characteristic frequencies, for which

the individual clouds transition from being optically thin to optically thick.

Example 2: to calculate the intensity distribution of an extended source in the sky we need to

solve the radiation transport equation for each line-of-sight through the source and, to derive
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the integrated radiation flux from an unresolved source, integrate the intensity distribution over

solid angle, Fν =
∫

source
dΩ Iν .

For an extended source let us assume a sphere of radius R filled with emitting material of

constant emission and absorption coefficient. If our line-of-sight intersects the sphere at a

projected distance from the center r0 (or impact parameter), the length of the line-of-sight

is l = 2
√

R2 − r2

0
and the optical depth is τ = αν l = 2 αν

√

R2 − r2

0
. According to 5.12 the

intensity as a function of r0 then is

Iν(r0) = Sν [1 − exp(−τ)]

which gives the brightness distribution across the source on the sky. If as usual the absorption

coefficient is a function of frequency, Eq.5.12 also describes the variation of the spectrum across

the source.

To calculate the radiation flux, we need to integrate over all directions or, for a source at a

distance D � R equivalently over the apparent surface area, A, because dΩ '
1

D2
dA. In our

case

Fν =
1

D2

∫

dA Iν =
2π

D2

∫ R

0

dr0 r0 Sν [1 − exp(−τ)]

Using

τ = αν 2
√

R2 − r2

0
→ τ dτ = −4 α2

ν r0 dr0

we obtain

Fν =
π Sν

2 α2

ν D2

∫ 2 R αν

0

dτ τ [1 − exp(−τ)]

=
π Sν

2 α2

ν D2
[2 R2 α2

ν + 2 αν R exp(−2 αν R) + exp(−2 αν R) − 1]

= Sν

π R2

D2

[

1 +
exp(−2 αν R)

αν R
+

1

2 α2

ν R2
(exp(−2 αν R) − 1)

]

'

{

π Sν
R2

D2
τmax = 2 αν R � 1

4π

3
jν

R3

D2
τmax = 2 αν R � 1

Let us now consider scattering, which is more difficult to deal with because it depends on

the intensity of incoming radiation. Usually we denote a process as scattering, if it changes

the direction of radiation, Ω, though in quite a few cases scattering also leads to a change in

frequency. A well known example is the Compton (or Thompson) scattering on free electrons.

If the frequency does not change, we speak of elastic scattering. In this case we can add a

source term and a sink term to the radiation transport equation that derive from an scattering
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coefficient σ(Ωi, Ωa) for the scattering from the solid angle Ωi to the element dΩa. The sink

term then is

σ(Ω) =
∮

dΩ′ σ(Ω, Ω′) (5.13)

and the source term

jν(Ω) =
∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω) (5.14)

so the radiation transport equation for scattering writes

dIν(Ω)

ds
=

∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω) − Iν(Ω) σ(Ω) (5.15)

In the case of isotropic scattering with σ(Ωi, Ωa) = σ/4π we obtain

∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω) = σ Jν ⇒

dIν(Ω)

ds
= σ (Jν − Iν) (5.16)

Because the transport equation now involves Jν, the solid-angle integral of the intensity, we have

to simultaneously solve the radiation transport equation in a variety of directions, which makes

treatment of scattering problems awfully difficult. It is obvious, though, that the scattering

changes the radiation field toward isotropy, Iν → Jν.

So far we have neglected an explicit time dependence of the intensity. We have also used a

simplified notation with the tacit understanding that the path length element ds is meant in

the direction of radiation, ~ek. In the general sense the radiation transport equation is of the

form

dIν

ds
=

1

c

∂Iν

∂t
+~ek ·

~∇ Iν = jν − αν Iν − Iν σ(Ω) +
∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω) (5.17a)

The sum of the spontaneous absorption coefficient and the scattering coefficient forms the

Total opacity κν = αν + σ τ =
∫ s

s0

κν ds (5.17b)

and in this case the source function would be

dIν

dτ
= Sν − Iν ⇒ Sν =

1

κν

[

jν +
∮

dΩ′ Iν(Ω
′) σ(Ω′, Ω)

]

(5.17c)

In an optically thick situation we again have Iν = Sν.

5.2 Emission and absorption lines

We already noted that in thermodynamic equilibrium the emission spectrum should be a Planck-

ian, Bν(T ) and the matter will also follow a thermal Maxwellian with temperature T . Thermo-

dynamic equilibrium requires a good coupling between particles and radiation, that is at least
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optically thick conditions, so Iν = Sν = Bν(T ). The source function would therefore be the

Planckian. In LTE, the source function is still a Planckian, but the solution to the radiation

transport problem is no longer a Planckian, and in the absence of scattering we have

jν = αν Sν = αν Bν(T ) (5.18)

Specifying jν now boils down to specifying the temperature T , provided αν is known. If no

background source of emission exists, the solution to the radiation transport equation for a

homogeneous medium is

Iν(τ) = Bν(T ) [1 − exp(−τ)] (5.19)

How would a composite of continuum emission and spectral lines look like? If more than one

radiation process is operational, then the effective emission and absorption coefficients are the

sum of the respective coefficients for the individual processes.

jtot =
∑

i

ji αtot =
∑

i

αi (5.20)

This implies that at the location of a line the total absorption coefficient, and hence the optical

depth τν , is larger than at neighboring frequencies, irrespective of the temperature or density

of the medium.

If the system is optically thin in continuum (e.g. HI clouds) we would see emission lines. The

line intensity would depend on the line absorption coefficient as long as the line is optically thin.

In the opposite case of high opacity the line intensity will again be given by the Planckian.

The advantage that lines enjoy over continuum ceases to exist when the optical depth in the

continuum approaches and exceeds unity. Let us consider a background source in addition to

a homogeneous medium with emission and absorption in LTE.

Iν(τ) = Iν(0) exp(−τ) + Bν(T ) [1 − exp(−τ)] = Bν(T ) + [Iν(0) − Bν(T )] exp(−τ) (5.21)

If the background intensity is higher than the Planckian Bν(T ), e.g. due to a higher tem-

perature, then the term in brackets is positive and the emerging line intensity is less than

the continuum intensity on account of the larger opacity at the line frequency. We would see

absorption lines.

In the solar photosphere the temperature falls off with radius and the continuum is optically

thick. Let us approximate this by setting

Iν(0) = Bν(T
∗) T ∗ > T (5.22)

We now know that absorption lines should be observed from the photosphere as is the case in

the optical spectra of the sun and other stars. In the solar corona, however, the temperature
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is very much higher than in the photosphere, so that lines should be emitted in the ultraviolet

where

Corona Iν(0) � Bν(T ' 106 K) (5.23)

Consequently we observe emission lines in the ultraviolet from the solar corona.

5.3 The relation between spontaneous emission and absorption

Let us consider the Einstein coefficients for a two-level system for spontaneous emission A21,

spontaneous absorption B12, and stimulated emission B21. In the steady-state we have

n1 B12 J = n2 A21 + n2 B21 J ⇒ J =
A21

n1

n2

B12 − B21

(5.24)

In Thermodynamic Equilibrium with E1 = E, E2 = E + hν, and

n1

n2

=
g1 exp(−E/kT )

g2 exp(−(E + hν)/kT )
=

g1

g2

exp(hν/kT ) (5.25)

the intensity spectrum should be that of a black-body. This implies the relations

A21 =
2hν3

c2
B21 g1B12 = g2B21 (5.26)

Equation 5.26 depends only on atomic properties, not on the temperature or other ensemble

properties. Therefore the relation should be valid, whether the system is in thermodynamical

equilibrium or not. Furthermore, we have not specified a radiation process yet, thus the relations

must be valid whatever the emission process.

The emitted power per particle, Pν, and the emission coefficient can now be calculated as

Pν =
∑

E1

hνA21 =
∑

E1

2hν3

c2
hνB21 jν =

1

4π

∑

E2

n(E2) Pν (5.27)

where n(E2) is the density of particles at energy state E2. For the absorption we can calcu-

late the radiation coefficient by writing the absorbed energy as a differential. Then treating

stimulated emission as negative absorption we find the energy loss

Jν = Iν

dΩ

4π
and dV = dA ds

dE = −(n1B12 − n2B21)hν dV dt Jν = −(n1B12 − n2B21)
hν

4π
Iν ds dAdΩdtdν (5.28)

This energy loss corresponds to a change in the intensity of the radiation field

dE = dIν dAdΩdtdν = −(n1B12 − n2B21)
hν

4π
Iν ds dAdΩdtdν
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⇒ αν =
∑

E1

∑

E2

hν

4π
[n(E1)B12 − n(E2)B21] =

c2

2 hν3

∑

p2

p2

2
Pν [f(p∗

2
) − f(p2)] (5.29)

where p∗

2
is the momentum corresponding to the energy E2 − hν. For continuous distribution

we can write the radiation coefficients in the form of integrals.

jν =
1

4π

∫

dp n(p)Pν =
1

4π

∫

dE n(E)Pν αν =
c2

8π h ν3

∫

d3p Pν [f(p∗) − f(p)] (5.30)

Thus all terms in the radiation transport equation are reduced to one basic function, Pν.

Let us have a closer look at the absorption coefficient α. If the distribution function is inverted,

i.e. ∂f

∂p
> 0, the absorption coefficient will be negative, implying that stimulated emission is

stronger than absorption. In this case we may observe a Maser or a Laser.
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