
4. Reaction equilibria

4.1 The Saha equation

If particles and radiation are in equilibrium with themselves and each other, we call their state

Thermodynamic Equilibrium, and the spectra are given by a Planckian for the radiation and

a Fermi distribution (a Maxwellian if the density is not too high) for the particles. If the

particles are only in equilibrium with themselves, but not with the radiation, we speak of Local

Thermodynamic Equilibrium (LTE), in which the radiation spectrum is not a priori known,

but the particle spectrum is still a Fermi, resp. a Maxwellian, distribution.

In Local Thermodynamic Equilibrium the distribution of atoms with ionization state i over the

various energy states m is proportional to exp(−χi,m/kT ), where χi,m is the excitation energy

of state m relative to the ground state. Then
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where gi,m are the statistical weights of state (i,m), that is the number of independent ar-

rangements of the atomic electrons that give the same ionization state and energy level. After

summing over all m we find

Ni =
∑

m

Ni,m =
Ni,1

gi,1

∑

m

Ni,m gi,m exp(−
χi,m

kT
) =

Ni,1

gi,1

ui(T ) (4.2)

⇒
Ni,m

Ni

=
gi,m

ui(T )
exp(−

χi,m

kT
) where ui(T ) =

∑

m

gi,m exp(−
χi,m

kT
) (4.3)

is called the level partition function. We can extend this treatment to the continuity of states

with positive energy, that means ionizations. We then have to consider the free electron that

is liberated during the ionization, because it is part of the initial atom. The free electron no

longer has discrete energy levels, but a continuum of states limited only by Pauli’s principle

and Heisenberg uncertainty relation, so we have to use differentials and state densities. We

thus derive for the ratio of singly ionized atoms to neutral, both in ground state,
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where the factor 2 takes care of the two independent spin positions of a free electron. Integrating

over momentum we derive
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The electron shares the available volume with all electrons, and thus d3x = n−1
e . Hence we

finally derive the Saha equation that, using the level partition sums, can be written as an

equation for the ionization equilibrium.
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The density of electrons is determined by the density of ionized atoms, of course. In the

statistical sense, the Boltzmann (exponential) factor preferes the bound state, whereas the

large phase space volume available to a free electron favors the ionized state. Let us see what

we obtain for the ionization fraction of hydrogen in the solar photosphere, where

χ = 13.6 eV Tion =
χ

k
≃ 160.000 K Tgas ≃ 6.000 K nH ≃ 1017 cm−3 (4.8)

So the actual gas temperature is much smaller than the temperature equivalent of the ionization

energy. Naively one would expect a very low ionization fraction of hydrogen in the solar

photosphere. Hydrogen is the dominating element, hence the electron density should be related

to the hydrogen density by

ne =
Ni+1

Ni + Ni+1

nH (4.9)

The ratio of level partition sums is approximately 0.5, because the first excited level of atomic

hydrogen is high compared with the thermal energy. Inserting the numbers into Saha’s equation

then gives the ionization fraction

ξ =
Ni+1

Ni + Ni+1

⇒
ξ2

1 − ξ
≈ 10−7

⇒ ξ ≃ 3 · 10−4 (4.10)

A slightly hotter star with photospheric temperature T
∗

= 12.000 K of the same photospheric

gas density would have an ionization fraction ξ(T
∗

= 12.000 K) ≃ 0.3, much higher than what

the ionisation energy would suggest.

4.2 General statistical equilibrium

The Saha equation works well, if the density is high enough, for example in the photosphere

of the sun. It is inappropriate in lower-density media like the interstellar medium. Instead of

the detailed equilibrium, we may find a stationary state in the statistical sense, such that gains

and losses balance each other for all energy states. It would then be necessary to consider the

various atomic processes, such as photoionization and radiative recombination (with rate R) or

collisional excitation and three-body recombination (with rate C).

Ni (Ri,i+1 + Ci,i+1) = Ni+1 (Ri+1,i + Ci+1,i) (4.11)
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These transition rates depend on the density of free electrons and on the intensity of the ambient

photon field.

Ni (J Pi,i+1 + neQi,i+1) = Ni+1 (nePi+1,i + n2

eQi+1,i) (4.12)

and so does the occupation of the ionization states. The three-body recombination is usually

negligible on account of the low density.

Near a star-forming region in a galaxy the intensity of optical-to-UV photons is probably very

high, for the volume density of luminous hot stars is high. In that case photoionization (the

first term on the LHS of 4.12) likely dominates over collisional excitation (the second term).

We then expect
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(4.13)

Near a young massive star the RHS of Eq.4.14 is much larger than unity, so the star will ionize its

surroundings and thus destroy the cold molecular gas clouds in which it formed. The intensity

of ionizing radiation will fall of not only with the inverse square of the distance to the star, but

also on account of the photoionization which from the standpoint of the photon is an absorption

process (photoelectric absorption). Short of calculating how exactly the ionization eats through

the neutral gas in what is called an ionization front, we can estimate the size of the final region

of ionized gas, called an HII-region (the roman numeral indicates the ionization state of the

element starting with ”I” for neutral, ”II” for singly ionized, etc.). In an equilibrium situation

the total rate of ionization inside the HII-region of radius R and density of free electrons,

ne, equals the production rate of ionizing photons by the central star, L∗. The total rate of

recombination must be identical to that:
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The final bubble of ionized gas blown by a star is called Strömgren sphere. The Strömgren

sphere of our sun is only about 50 Pluto orbits in size, but very massive stars can singlehandedly

ionize a thousand solar masses worth of interstellar gas. Far from hot stars, e.g. in the galactic

halo, photoionization probably plays a negligible role. Then
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(4.15)

Apparently we can expect different lines to be prominent in these two cases. One can therefore

use the intensity ratios of characteristic lines to infer the electron density and the intensity of

ionizing or exciting photon field.
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