
13. Temperature balance and gravitational collapse

The gas between stars, commonly referred to as the interstellar medium, and the gas between

galaxies, called the intergalactic medium, is subject to a number of heating processes, which

must be balanced by cooling, otherwise the temperature of the medium would perpetually

increase. Some heating processes operate continuously, like heating by absorption of radiation.

If the absorption is done by free particles, like free electrons, all the energy of the absorbed

photon is available as heat. If the absorption is done by exciting or ionizing an atom, much

of the photon energy is stored as potential energy in the atom. In case of ionization only the

kinetic energy of the free electron can be thermalized, so the photon energy minus the binding

energy of the atomic electron is available as heat. Gas can also be collisionally heated by

energetic particles called cosmic rays.

Other heating processes like shock heating operate intermittendly. Let us estimate the heating

contributed by supernova remnant shocks. Measurements indicate that typically every tSN =

50 years a supernova explodes in the Galaxy and the typical explosion energy is E = 1051 ergs.

The Galaxy can for our purposes be approximated as a disk with radius 10.000 pc (parallax

second=parsec, 1 pc = 3 Light-years) and thickness 500 pc, so its volume is Vgal ≃ 1.5 ·1011 pc3.

From the jump conditions at strong (M → ∞) hydrodynamical shocks we derived the post-

shock temperature as a function of the shock velocity as

kT2 =
2 (γ − 1)

(1 + γ)2
m V 2

s ⇒ T2 ≃ (3 · 105 K)

(

Vs

100 km/s

)2

(13.1)

From the Taylor-Sedov blast-wave solution we know that the shock velocity and radius scale as

Vs(t) =
drs

dt
=

2

5
x0

(

E

ρu t3

)1/5

rs(t) = x0

(

E t2

ρu

)1/5

(13.2)

where x0 marks the shock location in the self-similar coordinates. Let us for simplicity just use

x0 = 1. Let us also take the average value for the gas density in the interstellar medium.

On average : n ≃ 1 atom/cm3 ρ ≃ 2 · 10−24 g/cm3 (13.3)

We can now ask ourselves: how often is the interstellar medium heated to at least a million

degrees temperature? According to Eq.13.1 this would require the region be overrun by a shock

with at least the critical velocity Vc ≃ 180 km/s. The blastwave velocity is larger than this

critical value as long as the blastwave radius is smaller than the critical value

rc ≃
(

22 E

ρu 52 V 2
c

)1/3

≃ 6 · 1019 cm ≃ 20 pc (13.4)
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for our parameters. The volume occupied by the remnant then is

V (rc) ≃
4π

3
r3

c ≃ (3.4 · 104 pc3)

(

E

1051 erg

) (

n

atom/cm3

)−1

(13.5)

For each location the probability P to be overrun by the blastwave is identical to that being

inside the volume V (rc) and given by the ratio of V (rc) and the total volume of the Galaxy,

Vgal. The average time between two encounters with shock waves that would heat to at least a

million degrees then is

trep = tSN

Vgal

V (rc)
≃ (2 · 108 years)

(

n

atoms/cm3

)

(

T

106 K

)

(13.6)

where I have added the dependence on the gas density and the temperature, to which we gas

is to be heated. Two hundred million years may seem a long time, but one has to compare this

to the time it takes to cool the gas again.

13.2 The cooling of interstellar gas

Interstellar gas cools by radiating. Free electrons radiate on account of the acceleration in the

Coulomb fields of ions, which we call bremsstrahlung. More efficient in many circumstances

is line radiation from heavier atoms and ions, which includes so-called forbidden lines, which

cannot be observed in the laboratory. These arise from states that have a very long lifetime

with respect to radiative transitions. In the lab the atoms will all be collisionally de-excitated,

but that doesn’t work in space on account of the extremely low density, thus allowing the

radiative transition to operate.
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The cooling function Λ is based on the probability of all transitions. The real energy loss rate

per atom depends in addition on the number of interaction partners, i.e. the density of gas.

The rate of change in the thermal energy density of gas also depends on how many particles

per volume element loose energy, i.e. in total it scale with the square of the density.

∂ǫ

∂t
+ . . . = − ρ2

m2
p

Λ(T ) or
∂T

∂t
= − ρ

m

γ − 1

k
Λ(T ) (13.7)

At temperatures between 106 K and 108 K the cooling function is approximately constant and

the rate of change of the temperature is

∂T

∂t
≃ −(2 · 10−7 K/s)

(

n

atoms/cm3

)

(13.8)

The timescale on which gas cools significantly is then estimated as

τcool =
T

|Ṫ |
≃ (1.5 · 105 years)

(

n

atoms/cm3

)−1
(

T

106 K

)

(13.9)

Comparing Eq.13.6 and 13.9 we see that between two encounter with a SNR blastwave the gas

will cool and likely reach an equilibrium state, unless the gas density is very low. That leaves

us with the question: what are temperature equilibrium states for interstellar gas?

13.3 Temperature equilibria for gas

An equilibrium may exist between the continuous heating by energetic particles and radiation

on one side and radiative cooling on the other side. Once out of equilibrium, gas has two ways

of returning to equilibrium, (i) by an imbalance of heating versus cooling with the right sign

and (ii) by expansion or compression. In the absence of large-scale expanding or compressing

flows and under a hydrostatic equilibrium, what would be stable temperature equilibria? Are

they possible at all temperatures?

An equilibrium is characterized by an exact balance of the heating and cooling terms.

k

γ − 1
Ṫ =

1

n
(H− C) =

H
n

− n Λ = 0 (13.10)

The heating arises from interactions with external agents, energetic particles and radiation,

and will depend on density (in the equation for ǫ) but not on temperature. The heating per

atom (H

n
) is usually constant.

We now wish to see, whether or not the equilibrium is stable. If the system is subjected to

a temperature perturbation, does it return to the equilibrium temperature or would it move

away? Let us denote the equilibrium temperature as T0. Then

H
n

= n Λ(T0) (13.11)
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Suppose an infinitesimal perturbation of the temperature T = T0 + δT . Then

k

γ − 1
Ṫ =

H
n

− n Λ(T0 + δT ) = n Λ(T0) − n Λ(T0 + δT ) = −n δT
∂Λ

∂T

∣

∣

∣

∣

T0

(13.12)

So the heating/cooling imbalance imposed by a temperature perturbation is directed opposite

to it, that is correcting the perturbation, if the cooling function is increasing with temperature.

If the cooling function were falling off with temperature, the equilibrium would thus be unstable.

The cooling function has a positive gradient for all temperature below 105 K, and steep gradients

below 1000 K and around 104 K. This is why in the interstellar medium we find most of the gas

at low temperatures, molecular hydrogen at about 40 K, atomic hydrogen between 50 K and

a few hundred Kelvin, and ionized gas at 104 K, when it is ionized and heated by the strong

radiation field of young massive stars (HII regions), and at 106 K. The phases in which the

interstellar gas is observed can thus be understood in terms of temperature equilibria. Dense

gas tends to have a lower temperature in equilibrium, where the cooling function is lower,

because ρ Λ must balance the heating. There is also a hot dilute gas, that doesn’t have a

characteristic temperature, because there is not stable temperature equilibrium. Typically the

interstellar gas is in pressure equilibrium (Dense gas tends to have lower temperature!), so the

different phases of the gas satisfy

nH2
TH2

≃ nHI THI ≃ nhot Thot (13.13)

Gas at a few million degrees therefore tends to have a low density n ≈ 10−3 − 10−2 atoms/cm3

and the cooling time (cf. Eq.13.9) is of the order of 108 years, so the gas is not in equilibrium.

13.4 Gravitational collapse

In homework problem 3 we have already treated the Jeans limit for the gravitational instability

of a gas cloud. In real circumstances the gravitational instability very often arises as a conse-

quence of a temperature instability. A density perturbation, that we can think of as a sound

wave, creates a region of slightly higher density, so according to (13.10) the temperature balance

is violated, cooling sets in, and compression is no longer adiabatic. Normally a compression

would go along with an increase in pressure that provides a restoring force. In our case the

cooling will somewhat reduce the pressure and thus the restoring force. This is in addition to

the increase in self-gravity that we consider in the Jeans limit.

The energy loss or gain by emission or absorption of radiation is very important for gravitational

collapse. Very early in the evolution of the universe, roughly before recombination at a redshift

of z ≃ 1000, the ambient radiation was so strong that it was the dominant source of pressure.

The Jeans mass for radiation is much larger than the total energy in the universe. Because
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matter and radiation were in thermodynamic equilibrium, the radiation could effectively prevent

the growth of density perturbations. This is why the fluctuations in the microwave background,

which represents density perturbations at z ≃ 1000, are of the order of a few parts in a million.

After recombination matter and radiation were no longer in thermodynamic equilibrium, but

evolved separately. However, the temperature had dropped to below a few thousand Kelvin,

so the hydrogen atoms were in their ground states. Heavier nuclei had not yet been produced

in stars, and so dust and smaller molecules did not exist, which today account for the bulk

of cooling at low temperatures. Gravitational collapse was therefore largely adiabatic and

therefore slow. Compare here our hydrostatic equilibrium calculation for a white dwarf with

equation of state P = P0 ρ5/3 which is the same as that of hydrogen gas given the appropriate

choice of P0. In (3.30) we found

5

2
P0 ρ(0)2/3 =

G M(R)

R
and M = x ρ(0) R3 ≈ ρ(0) R3

⇒ 5

2

P0

R
≃ G M1/3 (13.14)

Cooling corresponds to a reduction of P0 because for an ideal gas T = (m/k) P0 ρ2/3. Equation

(13.14) tells us that following a decrease in P0 the system will assume a new equilibrium

configuration with smaller size R, but not continue collapsing. Cooling is therefore an important

condition for gravitational collapse. The efficacy of cooling depends on density, which explains

why the first phases of structure formation, the creation of galaxy clusters and superclusters,

are very slow and still ongoing, whereas the formation of stars out of a dense molecular cloud

takes only about a million years.

If cooling was very efficient, how quickly could a structure form? The structure could be

anything, a star, a galaxy, or a cluster of galaxies, the difference being their mass and initial

density. Let us consider a spherically symmetric gas cloud of mass M that is gravitationally

unstable. The most unstable scenario is given if the pressure is exactly zero, so I can neglect

radiative cooling. The situation is know a the free-fall limit.

The important principle is energy conservation between the potential energy and the kinetic

energy associated with the radial infall. It suffices to follow the fall of one atom at the surface

of the collapsing gas cloud. The gravitationally effective mass is then always the total mass of

the cloud, and the acceleration is purely radial, for the angular momentum is zero. Then we

have for the gravitational acceleration

R̈ = −G
M

R2
⇒ Ṙ R̈ = −G

M

R2
Ṙ

⇒ d

dt

(

Ṙ2

2
− G M

R

)

= 0 ⇒ Ṙ2

2
=

G M

R
+ C (13.15)
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where C is a constant that we can fix using an initial condition, for example that the system

was at rest at some earlier time when it had the radius R0. Then the remaining differential

equation can be solved using standard methods.

Ṙ2 = 2 G M
(

1

R
− 1

R0

)

⇒ dR

dt
= ±

√

2 G M

R0

√

R0

R
− 1 (13.16)

Given that the acceleration is always negative, the minus-sign is the only relevant case.

⇒
√

2 G M

R0

(t − t0) =
∫ R0

R

dr
√

R0

r
− 1

(13.17)

To solve the integral on the RHS a variable transformation y =
√

r/R0 yields the form

∫ R0

R

dr
√

R0

r
− 1

= R0

∫ 1

R/R0

dy
y2

√
1 − y2

≃ R0

∫ 1

0

dy
y2

√
1 − y2

(13.18)

where I have used R ≪ R0 to set the lower limit to zero. A second transformation y = sin θ

with dy =
√

1 − y2 dθ yields
√

2 G M

R0

(t − t0) = 2 R0

∫ π/2

0

dθ sin2 θ =
π

2
R0 (13.19)

Then

t − t0 =
π

2

√

R3
0

2 G M
=

√

3π

32

1

G ρ̄
≃ 1

G ρ̄
(13.20)

where ρ̄ is the average mass density of the collapsing cloud.

The collapse timescale of gas with density n = 100 H − atoms/cm3 is about 5 million years,

which is relevant for the collapse of a dense cloud of interstellar gas to be turned into stars.

For a cluster of galaxies, the free-fall timescale of gas with density n = 10−4 H − atoms/cm3 is

about 5 billion years or 40% of the age of the universe. This is another reason why stars form

faster than galaxies and clusters of galaxies.

There is another issue: the free-fall time scales with the average gas density. Suppose the initial

gas cloud has a higher density in the center than in its outer layers. The free-fall time for the

central part is then shorter than that of the envelope, so the center will collapse away from

the envelope, thus effectively providing the zero-pressure environment that we had assumed

in our calculation. The free-fall collapse is therefore not homologous or self-similar, it doesn’t

preserve the radial density profile. This is an interesting aspect of supernovae explosions of

massive stars, in which the core collapses to a neutron star or black hole, and incoming fresh

material is undergoing a violent fusion reaction, all while the outer gas envelope hasn’t moved.
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