# **Neutrino Astrophysics**



### Ring Imaging in Water Tanks







H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos

# Energiespektrum



H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos

Greisen-Zatsepin-Kuzmin Cut-Off: Energy loss in cosmic microwave background (CMB)  $p(100 \text{ EeV}) + \gamma(\text{CMB}) \rightarrow p + \pi, n + \pi$ 

p beyond ankle

p(100 EeV)



p below ankle → isotropized in B-fields

#### Neutrino vs. HE gamma and proton astronomy



# Neutrino-Production

by proton interaction with matter or with a photon field



i.e.  $v_e : v_\mu : v_\tau \sim 1:2:0$ 

#### Vorhersagen für v-Spektren



H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos



### vN-Wirkungsquerschnitte



| $E_{\nu}  [{\rm GeV}]$                 | $10^{3}$           | $10^{6}$           | $10^{9}$            |
|----------------------------------------|--------------------|--------------------|---------------------|
| $\sigma_{\rm tot}(\nu N) [{\rm cm}^2]$ | $8.4\cdot10^{-36}$ | $8.9\cdot10^{-34}$ | $1.5\cdot 10^{-32}$ |
| $\rho\Lambda$ [km w.e.]                | $2.0\cdot 10^6$    | $1.9\cdot 10^4$    | $1.1\cdot 10^3$     |

#### Myon-Reichweite



#### Muon Range



Muons have long tracks in water  $R_{\mu}(E_{\mu} = 300 \text{GeV}) \approx 1 \text{ km}$ 

Due to the long muon range the target volume is much bigger than the detector instrumented volume

#### vµ-Winkel

At >TeV energies the muon and the neutrino are co-linear



Reconstruction of the  $\mu$  trajectory allows the identification of the  $\nu$  direction



H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos

# Myonspur im Eis/Wasser



0 ۰

0

·'8

Primary Channels





#### AMANDA / IceCube

#### $\nu_{\mu} + N \rightarrow \mu + X \Rightarrow$ high energy $\mu$ above C-threshold in ice

#### Neutrino Telescopes in Water and Ice





# AMANDA- 2000 data

First spectrum > 3 TeV:

- up to 100 TeV

matches
lower-energy
Frejus data







2000-2004: 4282 events

1001 days live-time

Search for an excess of events

- from candidate sources
- anywhere on the northern sky
- Atm-v Background from 'off-source' data
- No detection yet, flux upper limits set

#### Candidate sources

| Source        | Events observed/<br>background<br>(5 years) | Events observed/<br>background<br>(4 years) | Flux upper limit<br>Sys. unc. 15% sig, 8% bg<br>Φ <sub>90%</sub> (E <sub>v</sub> >10 GeV) [10 <sup>-8</sup> cm <sup>-2</sup> s <sup>-1</sup> ]<br>(5 years) |
|---------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Markarian 421 | 6 / 7.37                                    | 6 / 5.58                                    | 0.43                                                                                                                                                        |
| Markarian 501 | 8 / 6.39                                    | 5 / 4.96                                    | 0.85                                                                                                                                                        |
| 1ES1959+650   | 5 / 4.77                                    | 5 / 3.71                                    | 0.78                                                                                                                                                        |
| M87           | 6 / 6.08                                    | 4 / 4.90                                    | 0.50                                                                                                                                                        |
| 3C273         | 8 / 4.72                                    |                                             | 0.99                                                                                                                                                        |
| SS433         | 4 / 6.14                                    | 2 / 4.50                                    | 0.27                                                                                                                                                        |
| CI Cam        | 9 / 6.72                                    | 5 / 5.11                                    | 1.04                                                                                                                                                        |
| Cygnus X-1    | 8 / 7.01                                    | 4 / 5.21                                    | 0.76                                                                                                                                                        |
| Cygnus X-3    | 7 / 6.48                                    | 6 / 5.04                                    | 0.67                                                                                                                                                        |
| Crab Nebula   | 10 / 6.74                                   | 10 / 5.36                                   | 1.01                                                                                                                                                        |

**No significant excess**, no indication for a neutrino source No new events seen from the direction of Crab Nebula

Flux upper limits improved H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos





#### 1. Diffuse flux of muon neutrinos (energy < 1 PeV)





#### **Cascades inside detector**

#### Sensitive to all 3 flavors

- CC electron and tau neutrino interaction:
- $v_{(e,\tau,)}$  + N  $\rightarrow$  (e,  $\tau$ ) + X
- NC neutrino interaction:





 $\Phi_{all-v}$  < 0.6  $\cdot$  10<sup>-6</sup> GeV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>



#### **Indirect Search for WIMPs**



At South Pole the Sun sinks maximally 23° below horizon. Therefore only Amanda-II with its dramatically improved reconstruction capabilities for horizontial tracks (compared to Amanda-B10) can be used for solar WIMP search.

#### Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA



H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos





80 Strings
4800 PMTs
Instrumented
Volume: 1 km<sup>3</sup>
Installation:
2005-2010



Imperial Coll, LondonUniversity of Oxford

#### University Utrecht

- Bartol Research Inst., Delaware
- (Univ. of Alabama)
- Pennsylvania State University
- UC Berkeley
- UC Irvine \*
- Clark-Atlanta University
- Univ. of Maryland
- IAS, Princeton
- University of Wisconsin-Madison
- University of Wisconsin-RiverFalls
- LBNL, Berkeley
- University of Kansas
- Southern Univ., Baton Rouge

 Uppsala University Stockholm University Universität Mainz Humboldt Univ., Berlin DESY, Zeuthen Universität Dortmund Universität Wuppertal Chiba University Universite Libre de Bruxelles Vrije Universiteit Brussel Université de Mons-Hainaut Universiteit Gent \* Univ. of Canterbury, Christchurch





#### Cherenkov tank arrays: IceTop



Southpole, Antarctica 1 km<sup>2</sup>

80 Stations x 2 x  $3.14 \text{ m}^2$ = 503 m<sup>2</sup>

 $E > 0.3 \ PeV$ 

slightly larger than K-GRANDE

#### IceCube: DOM









#### The first muon – IceTop shower coincident event



January 23 First runs with the four IceTop stations (8 tanks) taken

January 29 1:31 First IceCube string deployed

*February 9* First shower/muon coincidence events found

#### **Under construction:** 43°N 42°N 41°N **Telescopes in** 40°N 39"N 38"N 37"N Mediterranean 36"N

441





50







string based detector

# Above 10-100 PeV: Detection by Acoustic and Radio Waves



# Sehen und Hören: Nutze alle Sinne Teilchen hören ?!!

#### Akustische Sensoren für den IceCube Detektor

#### **Thermoakustisches Modell:**

⇒ Ultrahochenergetische Kaskade
⇒ Lokale Erwärmung
⇒ Expansion
⇒ Schallwelle



Akkustische Sensoren



#### RICE Radio Ice Cherenkov Experiment



# Measurement of horizontal air showers from Satellites



H.Kolanoski -- Astroteilchenphysik -- WS09/10 -- 5.5 HE-Neutrinos



