Charged Cosmic Ray Physics

How to measure Cosmic Rays

Direct Measurements ($E < 10^{15} \text{ eV}$):

Balloon Satellite

Indirect Measurements (EAS, $E > 10^{15} \text{ eV}$):

Scintillator detector array

Cherenkov counter array

Tracking chambers

Cherenkov tank detector array

Fluorescence telescopes

... (?)

photon 10¹⁴ eV

proton

 $10^{14} \,\mathrm{eV}$

gammas

 $10^{14} \,\mathrm{eV}$

iron

red = electrons, pe green = muons blue = hadrons

Energy cuts: 0.1 MeV for enables 0.1 GeV for muons, hadrons

Sketches of single components -proton shower

I.Oehlschlaeger,R.Engel,FZKarlsruhe

21336 m

Balloon Measurements: CAPRICE98

New Mexico \rightarrow Arizona, US, 1998 at 5.5 g/cm² ~ 37 km ~ 4.5 mbar p, He: 3 – 350 GeV p⁻, d⁻: 3 – 49 GeV

Satelliten-Experimente

ISS Höhe: ~ 340 km

Startdatum: 29. July 2010, Endeavour STS-134

Satellite Measurements: PAMELA

a payload for Antimatter Matter Exploration and Light–nuclei Astrophysics

altitude: 350 – 600 km	
p, He, Be, C:	0.08 - 700 GeV
p ⁻ :	0.08 – 190 GeV
e ⁻ :	0.05 - 400 GeV
e ⁺ :	0.05 – 270 GeV

Launch in Bajkonur: 15th June 2006

Resurs-DK1 Satellite

The TOF System

Antiproton-Proton Ratio

 \sim 500 days of data, 1 billion triggers

Results agree with theoretical expectations for secondary emission! Phys. Rev. Lett. **102**, 051101 (2009)

Exciting Result: Positron Fraction!

High statistic results disagree with conventional models at high energies!
→ primary positron emission from nearby pulsars or dark matter annihilation?

Neutralino annihilation

Production takes place everywhere in the <u>halo</u>!!

Measurement of primary and secondary CR elements

A really CRITICAL point !

The possibility to disentangle exotic signal from pure secondary production depends strongly on the precise knowledge of the parameters which regulate the diffusion of cosmic rays in the Galaxy.

Orbit characteristics

Elliptical $(350\div600 \text{ km})$

In the South Pole PAMELA crosses the <u>electron</u> Van Allen belt, and for some orbits the SAA (*South Atlantic Anomaly*)

Trigger & DataRate

TOF Scintillator Coincidence

S1 x S2 x S3 out of Belts and SAA

S2 x S3 elsewhere

Average trigger rate 25 Hz (for orbits with SAA).

<u>DownLink</u>

25 Hz x 5kB/evt $\sim 10 \text{ GB/day}$

(compressed mode)

Up to 20 GB daily accumulation

+ downlink in a few

ground-connections

Physics packets rate

Data rate consistent with the position along the orbit

Extended AirShowers (EAS): Detection

Extended AirShowers (EAS): Results

Scintillator Arrays I: KASCADE(-GRANDE)

Complex array consisting of:

KASCADE-array: hadron calorimeter e/µ scintillator array muon tracking chamber

GRANDE-array: scintillator array: 0.5 m^2 $37 \text{ stations x } 10 \text{ m}^2 =$ 370 m^2 piccolo trigger array

KASCADE-array

KASCADE-array: Detectors

Longitudinal Profiles - Energies

Shower Maximum:

$$X_{max} \sim \ln (E_0)$$

Longitudinal Profiles – e/µ-ratio

On ground level, Fe showers are older than p showers \rightarrow weaker em. component \rightarrow e/µ-ratio lower

KASCADE: Results

integral knee: index change from -2.7 to -3.1 at (3.96 ± 0.84) PeV

knee positions: $E_p < E_{He} < E_C < E_{Fe}$

(Plots & Values: H. Ulrich, Kascade Collaboration)

Cherenkov Counter Arrays: TUNKA

TUNKA: Array

Tunka Valley, Lake Baikal, RUS

TUNKA-25:

0.11 km² 25 stations 6 x 10¹⁴ < E < 10¹⁷ eV

TUNKA-133:

1 km² 133 (bigger) stations $6 \ge 10^{14} \le E \le 10^{18} \text{ eV}$

Cherenkov Tank arrays: IceTop

- Southpole, Antarctica 1 km²
- 80 Stations x 2 x $3.14 \text{ m}^2 = 503 \text{ m}^2$

61, 14

- Energieschwelle: E > 0.3 PeV
- slightly larger than K-GRANDE

IceTop Tanks with sunshades

a state of the

- Al

IceTop Tanks

Digitales Optisches Modul

- Minimiere Signalverlust
- Minimiere Anzahl der Auslesekanäle (Kabel)
- Minimiere Datenaufkommen
- \rightarrow PMT mit integrierter HV-Versorgung
- → Digitalisierung
- → Lokale Koinzidenz mit Nachbarn
- \rightarrow Kalibrierung und Tests
- \rightarrow Autonome Steuerung

Funktionsweise eines Photomultipliers (PMT):

DOM

Neutrinoteleskop IceCube

Luftschauer, Atomkerne und Myonbündel

Koinzidentes Ereignis

HiRes: Telescopes

HiRes-1: $10^{18.5} - 10^{20.5} \text{ eV}$ 21 mirrors $3^{\circ} - 17^{\circ}$ elevation 5 m^2 mirrors 256 pixel camera

HiRes-2: 10^{17.2} – 10²⁰ eV 42 mirrors (2 rows) 3° - 31° elevation

Auger Observatory

Surface Array + Fluorescence Telescopes

AUGER: Surface Detector

 $3000 \text{ km}^2 = 30 \text{ x AGASA}$ 1600 Cherenkov tanks = 16 x AGASA $1600 \text{ x } 10 \text{ m}^2 = 16000 \text{ m}^2 = 65 \text{ x AGASA}$ **E > 5 x 10^{18} \text{ cV}**

I TRACK STATE TIL

Auger Fluorescence Telescopes

Fluorescence Reconstruction

Surface Reconstruction

X_{max} and Mass Composition

Composition seems the get heavier above $2 \times 10^{18} \text{ eV}$

Energy Spectrum

UHEAS

DESY Summer Students 2010

http://www.desy.de/summerstudents/

DESY Summer Student Programme 2010

Each summer DESY offers undergraduate students in physics or related natural science disciplines the possibility to participate in the research activities of the laboratory.

In **2010** the program takes place from **July 20** to **September 09**. If you want to apply please refer to the <u>conditions</u>.

Selected candidates join in the day-to-day work of research groups at the DESY Laboratory in Hamburg or Zeuthen (Berlin) and participate in one of these <u>activities</u>.

While the work in the groups is the main activity, there will also be a series of lectures (given in English) related to the research done at DESY. Visits to the accelerators and experiments are also included in this programme.

If you are interested in our Summer Student Programme, please read the <u>how to apply</u> page.

Futher information for the program at <u>Hamburg</u> and <u>Zeuthen</u>

An announcement poster (pdf-file) you find here

The web pages of the 2009 programme you find here