Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008

Termine

Klausur

- Prüfungsordnung sieht zweistündige Klausur vor
- Termin: Donnerstag, 24.07.08
 - 9-11 Uhr s.t.
 - Raum: 2'101
- Masterstudierende: 3 Wochen vor Beginn der Prüfungswoche anmelden (29.06.08)

Kapitel 6.3

Standardmodell der Elementarteilchenphysik

Wiederholung

• Teilchen im Standardmodell (+ Antiteilchen): Spin 1/2 ħ

Generation	Quarks	Leptonen	
1	Up (u) Down (d)	Elektron-Neutrino (v _e) Elektron (e)	
2	Charm (c) Strange (s)	Myon-Neutrino (ν _μ) Myon (μ)	
3	Top (t) Bottom (b)	Tau-Neutrino (ν _τ) Tau (τ)	

• Wechselwirkungen: Eichbosonen mit Spin 1 ħ

WW	wirkt auf	Eichbosonen	
Schwache WW	alle Teilchen	W- und Z-Bosonen	Vereinigt zur
Elektromag- netische WW	geladene Teilchen	Photon	schwachen WW
Starke WW	Quarks	8 Gluonen	

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Quantenchromodynamik

- Theorie für starke WW: Quantenchromodynamik (QCD)
- Austauschteilchen: 8 Gluonen mit Farbladung (im Gegensatz zum ungeladenen Photon in Elektrodynamik)
 → viel kompliziertere Dynamik _{V(r)}
- Vergleiche Coulomb-Potenzial $V_{\text{Coulomb}}(r) \propto -\frac{\alpha}{r}$ mit Potenzial der QCD: $V_{\text{QCD}}(r) \propto -\frac{\alpha_S(r)}{r} + kr$

- "Confinement" (Analogie: Feder mit Federkonstante k)
 → keine freien Quarks
- → genug Spannungsenergie: Bildung von qq-Paaren

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Asymptotische Freiheit

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

5

Die Massenfrage

- Wie bekommen Teilchen (und W– und Z–Bosonen) ihre Massen?
- Lösung im Standardmodell: Higgs-Mechanismus
 - Peter Higgs (1964): Postuliere neues Quantenfeld, dass Vakuum ausfüllt, mit zugehörigem Teilchen: Higgs-Boson (Spin 0) → noch nicht experimentell nachgewiesen
 - Löst zwei (unterschiedliche) Probleme auf einmal: Massen für Fermionen und W- und Z-Bosonen
 - Aber: Wert der Masse immer noch freier Parameter
 - Leichtestes Quark (Up): m_u ≈ 1–3 MeV/c²
 - Schwerstes Quark (Top): mt ≈ 172 GeV/c², ca. Masse eines Goldatoms

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Analogie: Higgs-Mechanismus

Gäste bei einer Party (= Higgs-Feld)

Wie Teilchen Masse bekommen:

Prominenter betritt den Raum (= Teilchen)

7

Prominenter kommt schwer voran (= Masse)

Wie das Higgs-Teilchen Masse bekommt:

Jemand streut ein Gerücht (= Anregung des Higgs-Felds)

Gerücht verbreitet sich (= massives Higgs-Teilchen)

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Higgs-Suchen

 LEP (bis 2000): Higgs-Massen unter 114 GeV/c² ausgeschlossen, erste Anzeichen bei 115 GeV/c²?

Tevatron (ab 2001): intensive Suche

• Ab 2008/9: Suche am Large Hadron Collider (LHC)

9

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Kapitel 6.4

Schlüsselexperimente der Teilchenphysik

Novemberrevolution

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

11

Gluonentdeckung

- Elektron-Positron-Collider
 PETRA bei DESY (1979):
 - Beobachtung von Ereignissen mit e⁺e⁻ → 3 Jets
 - Interpretation:
 - 2 Quarks und 1 Gluon produziert
 - Neutralisierung der Farbladung ("Hadronisierung") durch Erzeugung neuer Teilchen
 - Beobachtet: 3 Bündel von Teilchen ("Jet")

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

12

W- und Z-Entdeckung

[C. Rubbia, Nobel Lecture, nobelprize.org]

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

13

W- und Z-Entdeckung

 Z → ee/µµ: Paar von geladenen Leptonen → Rekonstruktion der invarianten Masse

[C. Rubbia, Nobel Lecture, nobelprize.org]

Zahl der leichten Neutrinos

- Elektron-Positron-Collider LEP (CERN, ab 1989): E_{CMS} = 90 GeV
 → massenhafte Erzeugung von Z-Bosonen
- Z-Zerfall in ee, μμ, ττ, qq̄, νν̄ (unsichtbar) → vergleiche Form der Z-Resonanz im Spektrum der invarianten Masse mit Vorhersagen → 3 (leichte) Neutrinoflavors
- Konsistenz im Standardmodell:
 3 Generationen f
 ür Leptonen und Quarks

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Neutrinomasse

- Idee: massive Neutrinos → Mischung (analog zu CKM)
 → ein Neutrinotyp kann in anderen Typ "oszillieren"
- Super-Kamiokande (Kamioka, Japan): Wasser-Cherenkov-Detektor

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Kosmische

15

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

17

Standardmodell: Offene Fragen

- Ist der Higgs-Mechnismus in der Natur realisiert?
- SM liefert keine Erklärung für freie Parameter (Teilchenmassen, CKM-Matrix)
- Probleme mit Beschreibung von Prozessen oberhalb ca.
 1 TeV
- Vorgriff: SM-Teilchen: nur
 4% der Materie im
 Universum

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

Präsenzübung

 Welche der folgenden Zerfälle sind nicht erlaubt und warum? Welche Wechselwirkung vermittelt die erlaubten Zerfälle?

Moderne Physik (PK 23a), HU Berlin, Sommersemester 2008, Vorlesung 6

19

Themen für Übung

- Das Wu-Experiment zur Paritätsverletzung
- Entdeckung des Top-Quarks
- Weltuntergang durch den LHC?