BMR [3] and BFMRB [2] use Euclidean space time; this introduces a factor $(-1)^{p^{\prime}}$ compared to our definition of Feynman diagrams, where p^{\prime} is the weighted number of propagators and numerators in the corresponding diagram.
The conventions are such that the tadpoles become:

$$
\begin{aligned}
T^{B M R} & =-\left(\frac{\mu_{0}^{2}}{a}\right)^{\epsilon} \frac{a}{\epsilon(1-\epsilon)}, \\
T^{B F M R B} & =-\frac{m^{2}}{4 \epsilon(1-\epsilon)} .
\end{aligned}
$$

For an l-loop master integral with p propagators the relations between the integrals become (assuming here $\mu_{0}^{2}=m^{2}=a=1$):

$$
\begin{aligned}
M_{l, p^{\prime}}^{B M R} & =\frac{(-1)^{p^{\prime}}}{\left[e^{\gamma \epsilon} \Gamma(1+\epsilon)\right]^{l}} M_{l, p^{\prime}}^{C G R} \\
M_{l, p^{\prime}}^{B F M R B} & =\frac{(-1)^{p^{\prime}}}{\left[4 e^{\gamma \epsilon} \Gamma(1+\epsilon)\right]^{l}} M_{l, p^{\prime}}^{C G R} .
\end{aligned}
$$

One has also to take into account the various definitions of the series expansions:

$$
\begin{aligned}
M_{l, p^{\prime}}^{B M R} & =\left(\frac{\mu_{0}^{2}}{a}\right)^{2 \epsilon} \sum_{k} M_{k}^{B M R}\left(l, p^{\prime}, \ldots\right) \epsilon^{k}, \\
M_{l, p^{\prime}}^{B F M R B} & =\sum_{k} M_{k}^{B F M R B}\left(l, p^{\prime}, \ldots\right)(-2)^{k} \epsilon^{k} .
\end{aligned}
$$

