Physics at the LHC

- Introduction, Detector Aspects
- Search for the Higgs Boson
 - -Vector boson fusion mode
 - Measurement of Higgs boson parameters
- Standard Model Physics
 - W-mass measurement
 - Top Quark Physics
- Physics Beyond the Standard Model
- SUSY Signatures
- Search for Signals from Extra Dimensions

Karl Jakobs Institut für Physik Universität Mainz 55099 Mainz

Revised LHC Schedule

Dec. 2006 Ring closed and cold

Jan. - Mar. 2007 Machine commissioning

Spring 2007 First collisions, pilot run

L= $5x10^{32}$ to $2x10^{33}$, £1 fb⁻¹

Start detector commissioning

~ 10^5 Z ® $\ell\ell$, W ® ℓ **n**, tt events

June - Dec. 2007 Complete detector commissioning,

Physics run

 \mathbb{R} 2009 L=1-2 x10³⁴, 100 fb⁻¹ per year

(high luminosity LHC)

low luminosity: $L = 1x10^{33}$

 $= 1 \times 10^{33}$ 10 fb⁻¹ / year

high luminosity: $L = 1x10^{34}$

100 fb⁻¹ / year

Cross sections and production rates

$$\mathcal{L} = 1.0 \cdot 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$$

Process	σ	Events/s	Events/year
$\begin{array}{c} W \to e\nu \\ Z \to ee \end{array}$	15 nb	15	10 ⁸
	1.5 nb	1.5	10 ⁷
$tar{t}$ $bar{b}$ QCD jets $(P_T > 200 \; ext{GeV})$	800 pb	0.8	10 ⁷
	500 μb	10 ⁵	10 ¹²
	100 nb	10 ²	10 ⁹
$ ilde{g} ilde{g}$ $(m_{ ilde{g}}=1\; ext{TeV})$ Higgs	1 pb	0.001	104
$(m_H = 0.2 \text{ TeV})$	10 pb	0.01	10 ⁵
$(m_H = 0.8 \text{ TeV})$	1 pb	0.001	10 ⁴

Large production rates

Þ

• Precision measurements

at initial low luminosity

(W physics, top physics)

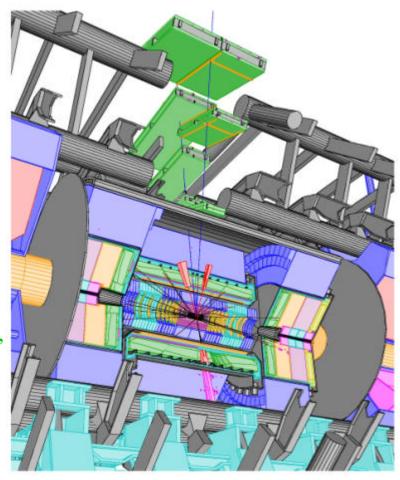
precision will be limited by systematic uncertainties.

- <u>Discoveries</u> (at low and high luminosity)
 Mass reach for new particles up to ~ 2 TeV
- Disadvantages:

 $\sigma_{\text{inelastic}} \sim 70 \text{ mb} \implies 700 \text{ Mio events / sec}$ at high L

Pile-up: 23 minimum bias events/bunch crossing at high L 2.3 minimum bias events/bunch crossing at low L

Detector Requirements


 Good measurement of leptons and photons

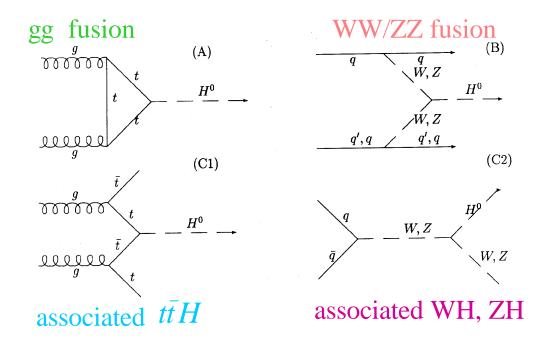
momentum range:

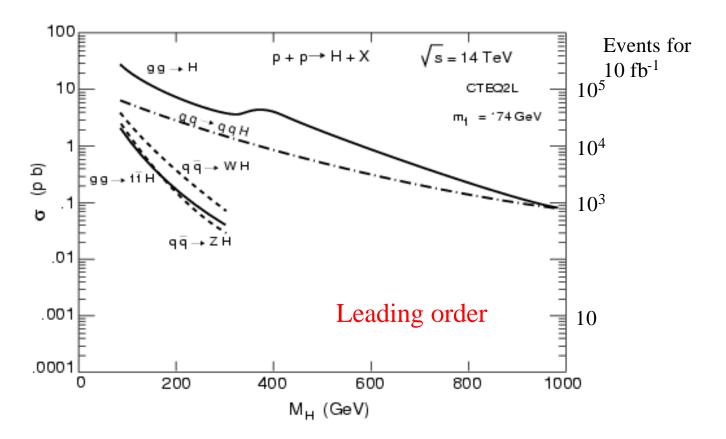
~ GeV
$$(b \rightarrow l \nu c)$$

~ TeV $(W \rightarrow l \nu)$

lepton energy / momentum scale: $0.1 \% \rightarrow 0.02\%$

(large statistics for calibration, $Z \rightarrow \ell \ell$, m_Z is close to m_W and m_H (?)


 \bullet Good measurement of missing transverse energy $(E_{T}^{\ miss}\,)$ and


Jet energy measurements and jet-tagging in forward region \Rightarrow calorimeter coverage down to $\eta \sim 5$

Jet energy scale: 1% (relevant for m_{top} , SUSY)

- Efficient b-tagging and τ identification (silicon strip and pixel detectors)
- Fast (25 ns bunch crossing) and rad. hard detectors and electronics

Search for the Higgs boson

- K-factors (\equiv higher-order corrections) = 1.6 1.9 gg \rightarrow H
- Residual uncertainties on NLO cross-sections (PDF, NNLO, etc.) ≤ 20%

Higgs production via Vector Boson Fusion

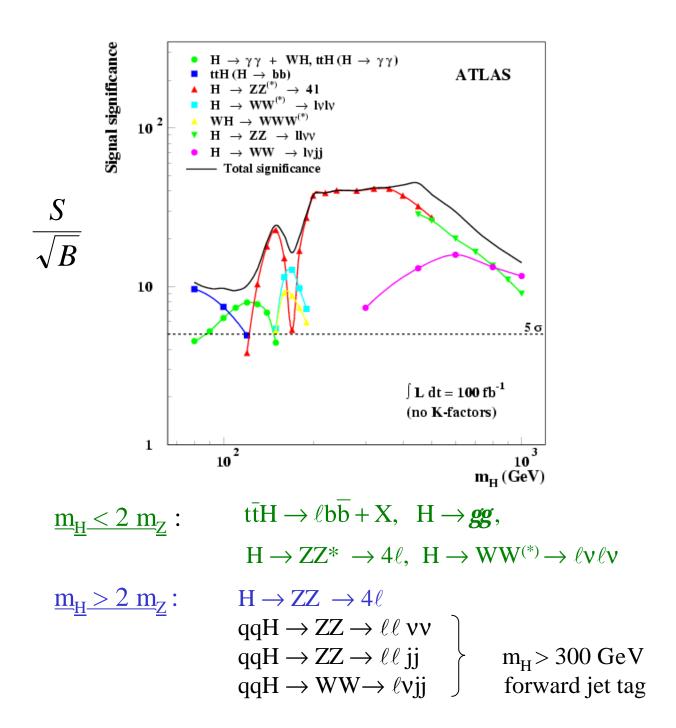
$$\begin{array}{c|c}
\hline
q & q \\
W, Z \\
\hline
W, Z \\
\hline
W, Z \\
\hline
q', q & q', q
\end{array}$$

Motivation:

- •Additional potential for Higgs boson discovery at low mass
- •Important for the measurement of Higgs boson parameters (couplings to bosons, fermions (taus), total width)

proposed by D.Rainwater and D.Zeppenfeld et al.: (hep-ph/9712271, hep-ph/9808468 and hep-ph/9906218)

Destinctive Signature of:

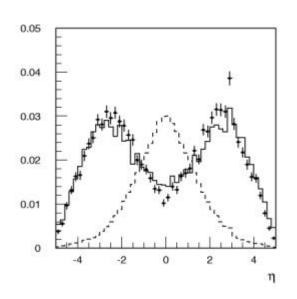

- two high P_T forward jets
- little jet activity in the central region
 Det Veto

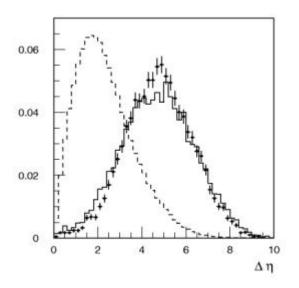
Experimental Issues:

- Forward jet reconstruction
- Jets from pile-up in the central/forward region

Channels studied: qqH ® WW*® lnln qqH ® t t ® lnnln ® lnn had n

Main search channels at the LHC

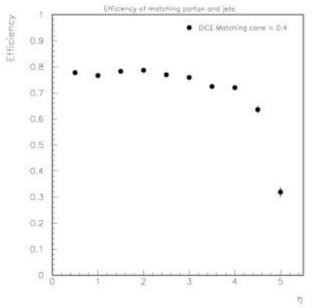

10 fb⁻¹: Discovery possible over the full mass range, however, needs combination of ATLAS + CMS


$$M_H = 115 \text{ GeV}$$
: S/ $\ddot{\mathbf{O}}$ B = 4.7

Forward tag Jets

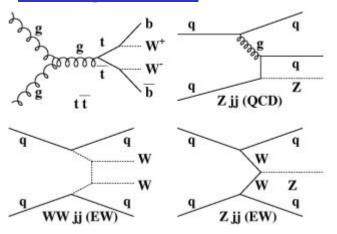
Rapidity distribution of tag jets VBF Higgs events vs. tt-background

Rapidity separation


Forward tag jet reconstruction has been studied in

full simulation in ATLAS

Results are consistent with TDR-results


kin. eff. for tag jets $(P_{T,} \Delta \eta)$ = 51.9%

tag eff. per jet: around 75%

Physics studies based on a fast simulation have been corrected for efficiency losses

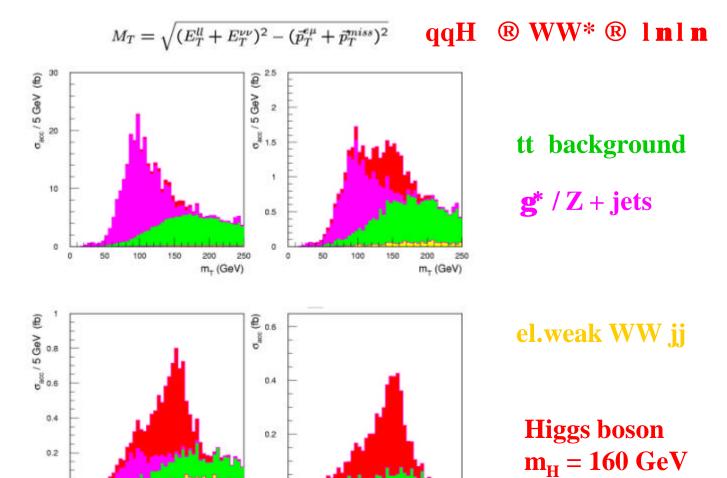
Background:

QCD backgrounds:

tt production Z + 2 jets (PYTHIA MC)

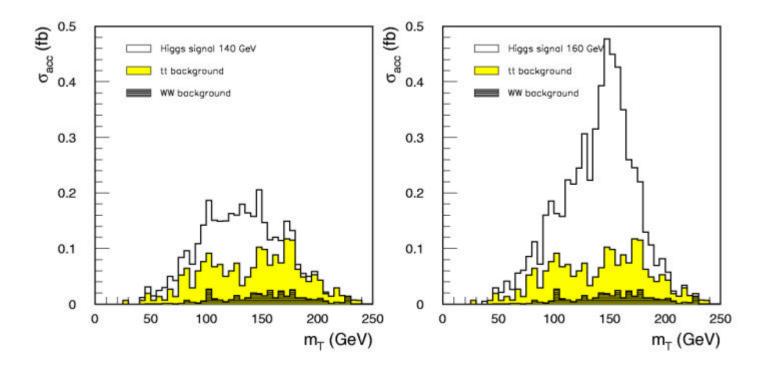
el.weak background:

WW jj production


Z + 2 jets

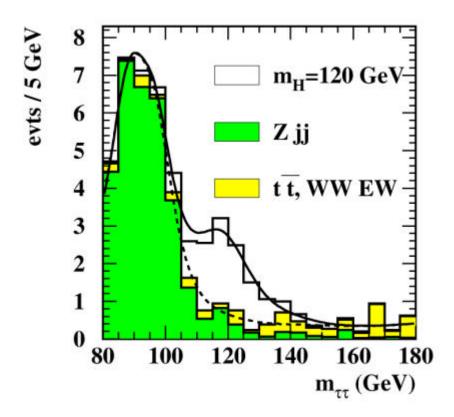
(matrix elements interfaced to PYTHIA)

Background rejection: qqH ® WW* ® InIn


- Lepton P_T cuts and tag jet requirements $(\Delta \eta, P_T)$
- Require large mass of tag jet system, tau rejection
- Jet veto
- Lepton angular and mass cuts

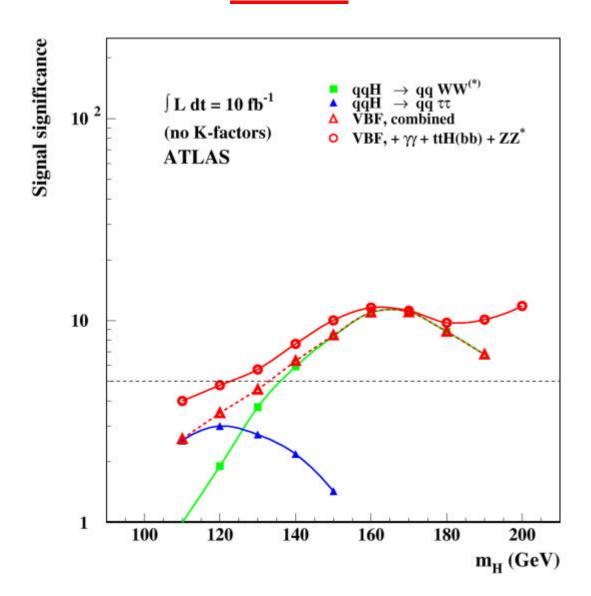
m_T (GeV)

m_T (GeV)

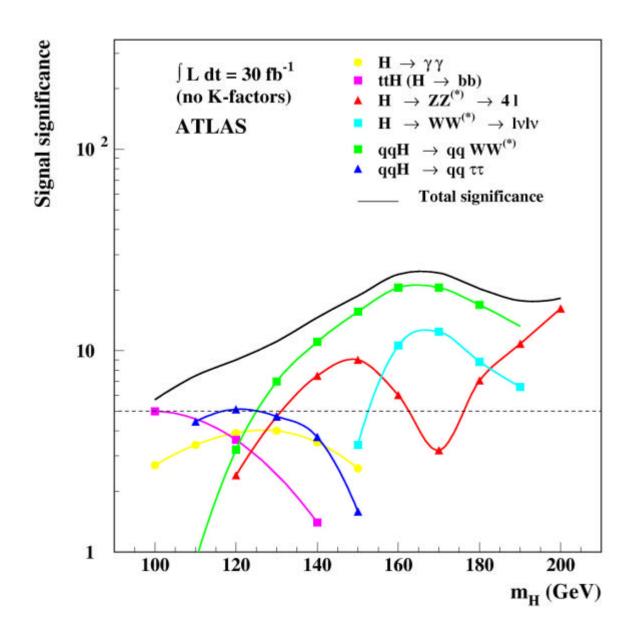

qq H ® qq WW*® qq l n l n

Number of expected events and signal significance for 5 fb⁻¹

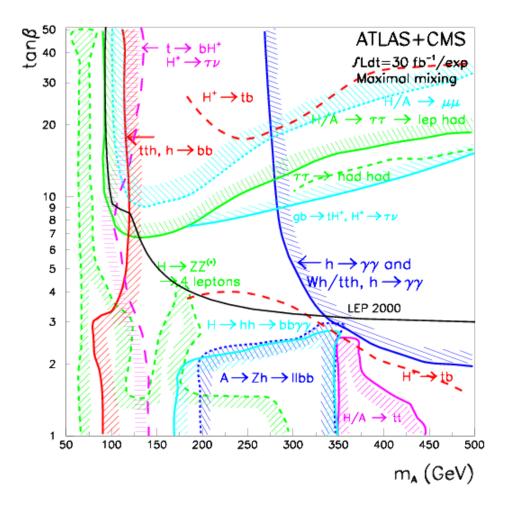
m_H	(GeV)	130	140	150	160	170	180
$H o WW^{(*)} o$		Ī			ĺ		ĺ
Signal	(5 fb^{-1})	4.7	8.3	13.3	21.6	21.7	18.1
Background	(5 fb^{-1})	3.1	3.8	4.3	5.5	6.2	6.9
Stat. significance	(5 fb ⁻¹)	2.1	3.3	4.7	6.5	6.3	5.2
$H \to WW^{(*)} \to ee$	$e/\mu\mu + X$						
Signal	(5 fb^{-1})	4.4	8.3	14.1	20.4	22.8	18.3
Background	(5 fb^{-1})	4.2	4.7	5.5	6.4	7.3	7.9
Stat. significance	(5 fb^{-1})	1.8	3.0	4.6	6.0	6.2	5.1
	Wiles 1262 11000						


qq H ® qq t t

Number of expected events and signal significance for 30 fb⁻¹:


m_H	(GeV)	110	120	130	140	150
$H \rightarrow \tau \tau \rightarrow e \mu P_T^{mi}$	88					
Signal		7.7	7.0	5.1	3.3	1.5
Background		10.1	3.7	3.3	2.7	2.2
Stat. significance	70	2.1	2.8	2.2	1.6	~
$H \rightarrow \tau \tau \rightarrow ee/\mu\mu h$	Pmiss T					
Signal		9.2	7.2	5.7	3.1	1.5
Background		15.4	7.6	5.6	4.6	3.4
Stat. significance		2.1	2.2	2.0	1.2	2
$H \rightarrow \tau \tau \rightarrow l \ had \ l$	Dmiss T					
Signal		19	15.6	13	10	5
Background		27.0	11.7	10.6	7.4	6.7
Stat. significance		3.3	3.8	3.4	3.0	1.6
combined						
Stat. significance		4.3	5.1	4.4	3.6	2.1

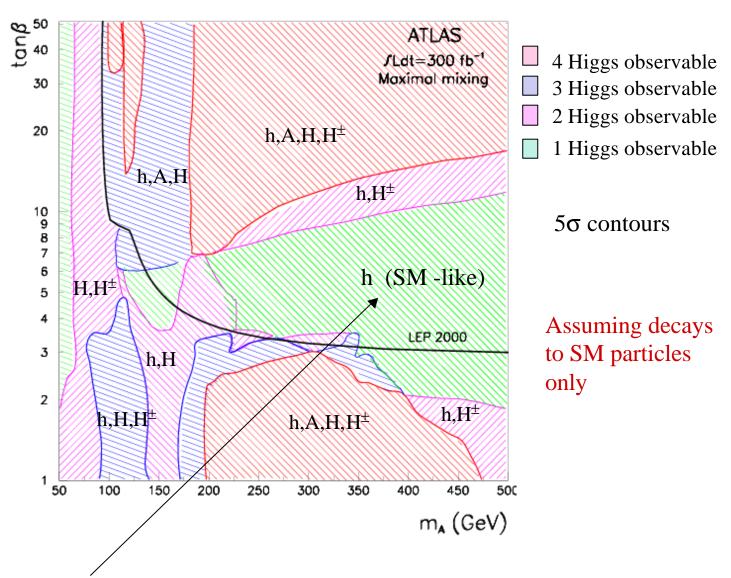
Combined significance of VBF channels for 10 fb⁻¹


- Vector boson fusion channels (in particular WW*) are discovery channels at low luminosity
- For 10 fb⁻¹ in ATLAS: 5 s significance for 120 £ m_H £ 190 GeV (after combination with the standard channels)

ATLAS Higgs discovery potential for 30 fb⁻¹

- Vector boson fusion channels improve the sensitivity significantly in the low mass region
- Several channels available over the full mass range

LHC discovery potential for MSSM Higgs bosons

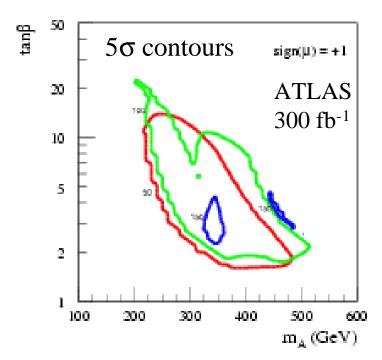


Assuming SUSY particles are heavy

Not all channels shown

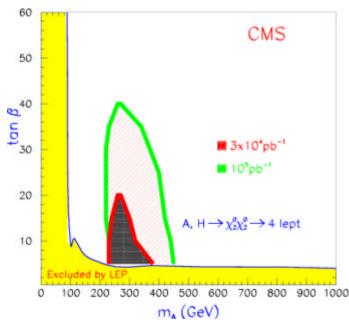
- Plane fully covered (no holes) at low L (30 fb⁻¹)
- Main channels: $h \to gg$, $b\overline{b}$, $A/H \to mm$, tt, $H^{\pm} \to tn$
- Two or more Higgs can be observed over most of the parameter space → disentangle SM / MSSM
- If LEP excess due to hZ production $(\tan \beta > 2, m_A > 115 \text{GeV})$, LHC will observe:

h for any $\tan \beta$ and m_A A,H,H $^{\pm}$ for large $\tan \beta$ and moderate m_A



Here only SM-like h observable if SUSY particles neglected.

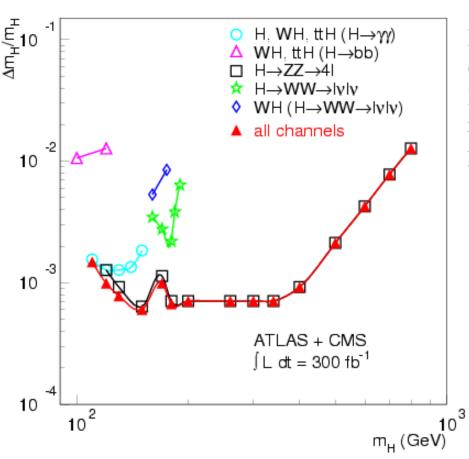
Higgs decays via SUSY particles


If SUSY exists: search for

$$H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow \ell \ell \chi^0_1 \ell \ell \chi^0_1$$

ATLAS: SUGRA scan

$$\begin{split} m_0 &= 50 - 250 \text{ GeV} \\ m_{1/2} &= 100 - 300 \text{ GeV} \\ \tan \beta &= 1.5 - 50 \\ A_0 &= 0 \end{split}$$


CMS:

special choice in MSSM (no scan)

$$\begin{split} M_1 &= 60 \text{ GeV} \\ M_2 &= 110 \text{ GeV} \\ \mu &= -500 \text{ GeV} \end{split}$$

Exclusions depend on MSSM parameters (slepton masses, µ)

Measurement of the Higgs boson mass

No theoretical error e.g. mass shift for large $\Gamma_{\rm H}$ (interference resonant/non-resonant production)

Dominant systematic uncertainty: γ/ℓ E scale. Assumed 1‰ Goal 0.2‰ Scale from $Z \rightarrow \ell\ell$ (close to light Higgs)

MSSM Higgs	$\Delta m/m$ (%)
h, A, H $\rightarrow \gamma \gamma$	0.1-0.4
$H \rightarrow 4 \ell$	0.1-0.4
$H/A \rightarrow \mu\mu$	0.1-1.5
$h \rightarrow bb$	1–2
$H \rightarrow hh \rightarrow bb \gamma\gamma$	1-2
$A \rightarrow Zh \rightarrow bb \ \ell\ell$	1–2
$H/A \rightarrow \tau \tau$	1-10

300 fb⁻¹

Note: present theoretical error $\Delta m_h \sim 3 \text{ GeV}$

Measurements of Higgs boson couplings

i) Ratio between W and Z partial widths

Direct measurements

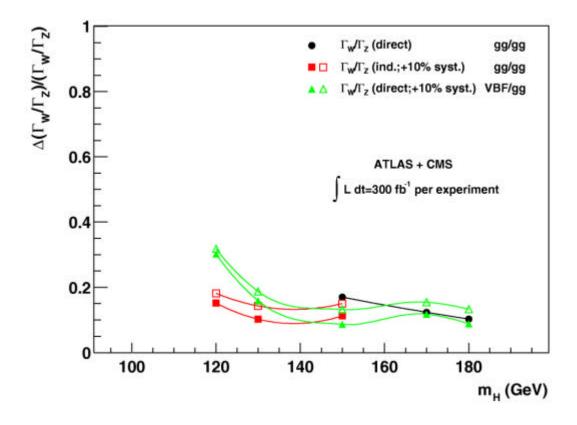
$$-\frac{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{ZZ}^*)} = \frac{\Gamma_g \Gamma_W}{\Gamma_g \Gamma_Z} = \frac{\Gamma_W}{\Gamma_Z}$$

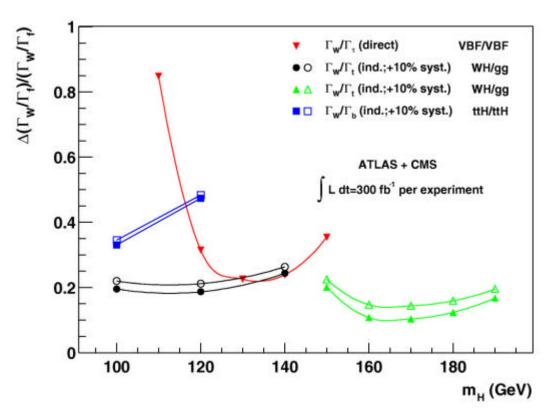
- QCD corrections cancel
- Indirect measurements (via H ® gg)

ii) Ratio of boson to fermion couplings

Direct measurement

$$VBF: -\frac{\sigma \times BR(qq \rightarrow qqH(H \rightarrow WW))}{\sigma \times BR(qq \rightarrow qqH(H \rightarrow \tau\tau))} = \frac{\Gamma_W \Gamma_W}{\Gamma_W \Gamma_\tau} = \frac{\Gamma_W}{\Gamma_\tau}$$


Indirect measurement


$$- \frac{\sigma \times \text{BR}(\text{WH}(\text{H} \to \gamma \gamma))}{\sigma \times \text{BR}(\text{H} \to \gamma \gamma)} = \frac{\Gamma_W \Gamma_\gamma}{\Gamma_g \Gamma_\gamma} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

$$- \frac{\sigma \times \mathsf{BR}(\mathsf{WH}(\mathsf{H} \to \mathsf{WW}))}{\sigma \times \mathsf{BR}(\mathsf{H} \to \mathsf{WW}^*)} = \frac{\Gamma_W \Gamma_W}{\Gamma_q \Gamma_W} \sim \frac{\Gamma_W}{\Gamma_t} * C_{QCD}$$

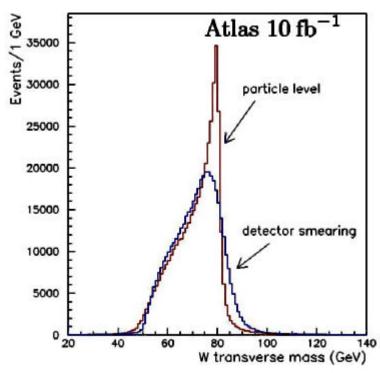
$$-\frac{\sigma \times \text{BR}(\text{ttH}(\text{H}\rightarrow\text{bb}))}{\sigma \times \text{BR}(\text{ttH}(\text{H}\rightarrow\gamma\gamma))} = \frac{\Gamma_t \Gamma_b}{\Gamma_t \Gamma_\gamma} \sim \frac{\Gamma_b}{\Gamma_W}$$

 Uncertainties on the ratio arising through different production processes are not included

W-mass measurement

Physics motivation:

Test of the Standard Model: m_Z , m_W , $m_{top} \implies m_H$


Year 2007: $\Delta m_W < 30 \text{ MeV}$ (LEP2 + Tevatron)

LHC goal: $\Delta m_W \sim 15 \text{ MeV}$ to match the precision on the top quark mass measurement

Experimental numbers:

- L dt = 10 fb-1: 60 Mio. well measured $W \rightarrow \ell \nu$ decays
- Background conditions from pile-up events at low luminosity (2 events / bunch crossing) similar to Tevatron today
- Standard transverse mass technique can be used:

$$M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^n \cdot (1 - \cos \Delta \mathbf{f}^{l,n})}$$

Estimate of \mathbf{D} \mathbf{m}_{W}

Source of syst.	CDF Run 1b	ATLAS	Comments
Lepton scale	75 MeV	15 MeV	<40MeV at Run II
Lepton resolution	25 MeV	5 MeV	Known to <1.5%
P _T (W)	15 MeV	5 MeV	Constrain with P _T (Z)
Recoil model	37 MeV	5 MeV	Constrain with Z data
W width	10 MeV	7 MeV	
PDFs	15 MeV	< 10 MeV	Constraints from the LHC
Radiative decays	20 MeV	< 10 MeV	Theor. calculations
Total	92 MeV	< 25 MeV	per lepton species

- Total error per lepton species and per experiment is estimated to be $\pm 25 \text{ MeV}$
- Main uncertainty: lepton energy scale (goal is an uncertainty of ± 0.02 %)
- Many systematic uncertaincies can be controlled in situ, using the $Z \to \ell\ell$ sample $(P_T(W),$ recoil model, resolution)

Combining both experiments (ATLAS + CMS), both lepton species and assuming a scale uncertainty of $\pm 0.02\%$

 $\mathbf{P} \mathbf{D} \mathbf{m}_{\mathbf{W}} \sim \pm 15 \, \mathbf{MeV}$

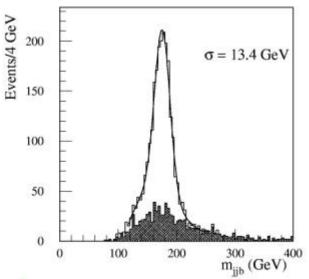
Measurement of the Top Quark Mass

Year 2007: $\Delta m_{top} \sim 2-3 \text{ GeV}$ (Tevatron)

Best channel for mass measurement:

$$tt \rightarrow Wb \quad Wb \rightarrow \ell \nu b \quad \text{jet jet b}$$


(trigger) (mass measurement)


Experimental numbers:

• Production cross section: 590 pb

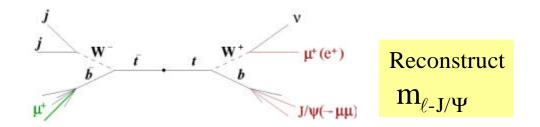
• After exp. cuts: 130.000 tt events in 10 fb⁻¹

 $S/B \sim 65$

results from full detector simulation

Contribution	Δm_{top} (GeV)
statistics	< 0.07
u,d,s jet scale	0.3
b-jet scale	0.7
b-fragmentation	0.3
initial state rad.	0.3
final state rad.	1.2
background	0.2
Total	~ 1.5 GeV

Syst. uncertainties dominated by final state radation


Additional Methods

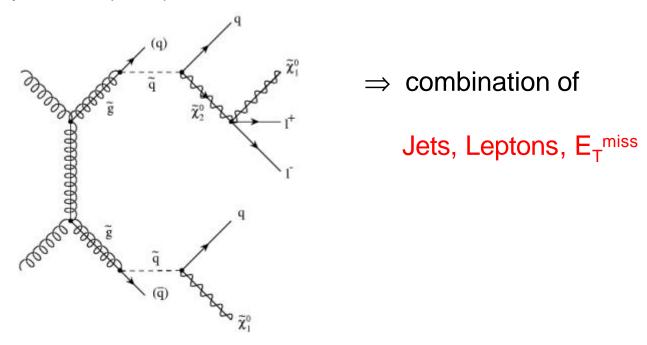
Full reconstruction applying kinematical constraints

$$m_{jj} = m_{\ell\nu} = m_W$$
 and $m_{jjb} = m_{\ell\nu b}$

Precision of ~ ± 1 GeV can be reached

• Using ℓ -J/ ψ final states:

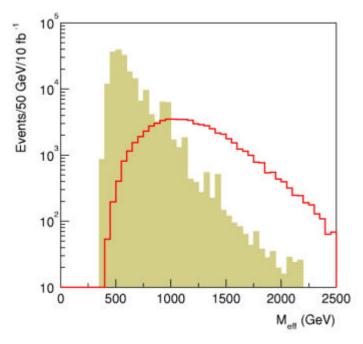
- BR = 10^{-5} : low rate, but clean signature
- Statistical error: ±0.9 GeV (for 500 fb⁻¹)
- Different systematic uncertainties (dominated by b-fragmentation: ~ 0.4 GeV)


combination of various methods:

$$\mathbf{D} \mathbf{m}_{\text{top}} < \sim \pm 1 \text{ GeV}$$

Search for Supersymmetry

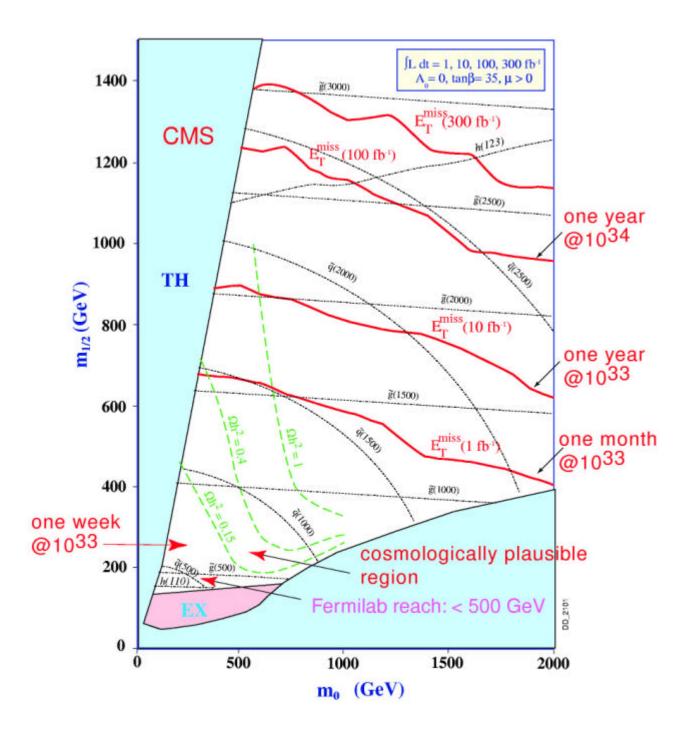
- If SUSY exists at the electroweak scale, a discovery at the LHC should be easy
- Squarks and Gluinos are strongly produced


They decay through cascades to the lightest SUSY particle (LSP)

- Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult)
 Strategy: select particular decay chains and use
 kinematics to determine mass combinations

Squarks and Gluinos

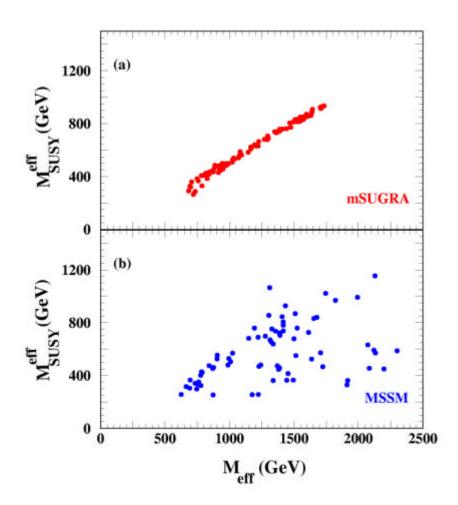
- strongly produced, cross sections comparable to QCD cross sections at same Q²
- If R-parity conserved, cascade decays produce distinctive events: multiple jets, leptons, and E_T^{miss}
- Typical selection: $N_{jet} > 4$, $E_T > 100, 50, 50, 50 \text{ GeV}$ $E_T^{miss} > 100 \text{ GeV}$
- Define: $M_{eff} = E_T^{miss} + P_T^1 + P_T^2 + P_T^3 + P_T^4$ (effective mass)


example: mSUGRA
$$m_0 = 100 \text{ GeV}$$
 $m_{1/2} = 300 \text{ GeV}$ $\tan \beta = 10$ $A_0 = 0, \ \mu > 0$

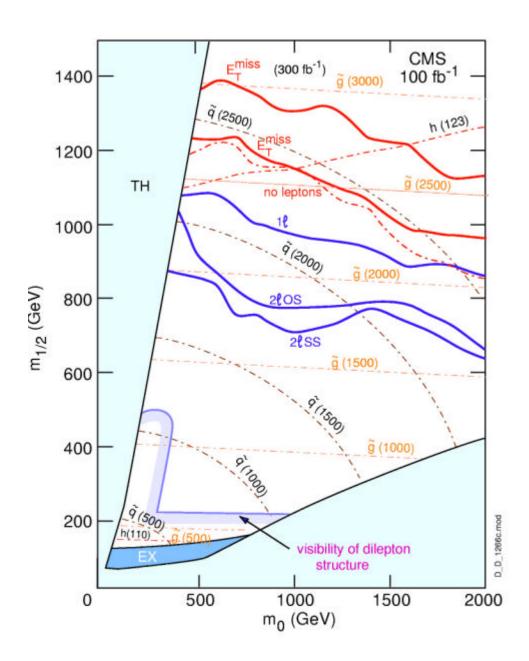
• LHC reach for Squark- and Gluino masses:

 $\begin{array}{cccc} 1 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 1500 \text{ GeV} \\ 10 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 1900 \text{ GeV} \\ 100 \text{ fb}^{\text{-1}} & \Rightarrow & \text{M} \sim 2500 \text{ GeV} \end{array}$

TeV-scale SUSY can be found quickly!


LHC reach in m_0 - $m_{1/2}$ mSUGRA plane:

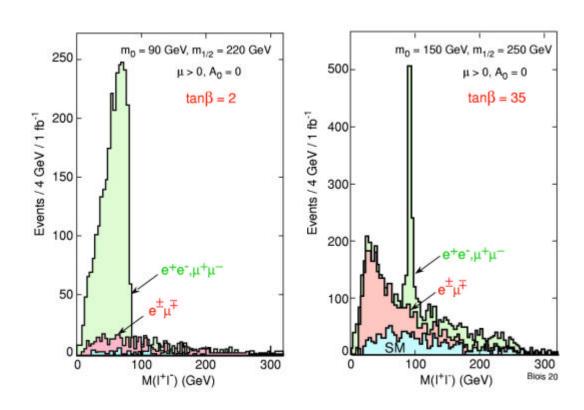
SUSY mass scale


• define average produced SUSY mass

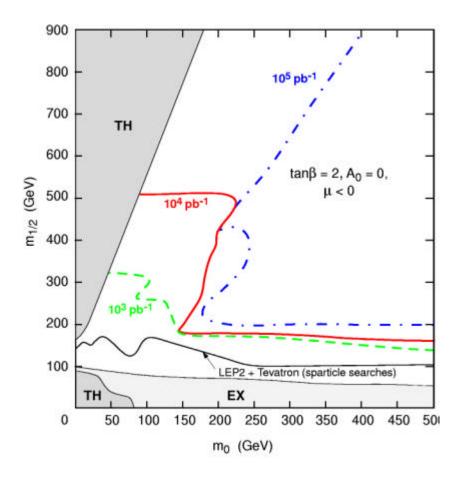
$$M_{
m SUSY} \equiv rac{\sum_i M_i \sigma_i}{\sum_i \sigma_i}$$
 $M_{
m SUSY} \equiv M_{
m SUSY} - rac{M^2(\tilde{\chi}_1^0)}{M_{
m SUSY}}$

- Good correlation with M_{eff} for mSUGRA
- Not bad even for MSSM (Tovey, ATLAS)

SUSY cascade decays give rise to many inclusive signatures: leptons, b-jets, τ 's


Expect multiple signatures for TeV-scale SUSY

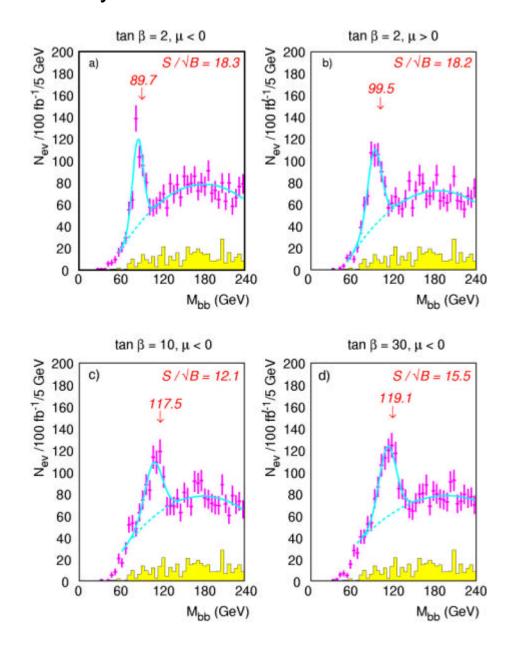
Determination of model parameters


- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 ⇒ mass combinations
- Simplest case: $\chi^0_2 \rightarrow \chi^0_1 \ell^+ \ell^-$

endpoint: $M_{\ell\ell} = M(\chi_2^0) - M(\chi_1^0)$

- Significant mode if no $\chi^0_{\ 2} \to \chi^0_{\ 1}Z, \ \chi^0_{\ 1}h, \ \ell \ \ell$ decays
- Require: 2 isolated leptons, multiple jets, and large E_T^{miss}

ullet Modes can be distinguished using shape of $\ell\ell$ -spectrum

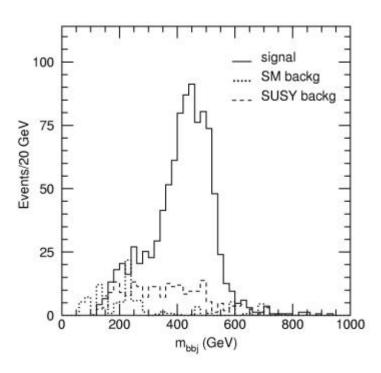

 $\ell\ell$ - endpoint can be observed over a significant fraction of the parameter space

(covers part of the SUGRA region favoured by cold dark matter (Ellis et al.))

h ® bb:

important if $\chi^0_2 \rightarrow \chi^0_1 h$ is open;

bb peak can be reconstructed in many cases


Could be a Higgs discovery mode!

SM background can be reduced by applying a cut on E, miss

work backwards the decay chain: example: SUGRA study point 5

$$pp o \tilde{q}_L \tilde{q}_R$$
: $\tilde{q}_R o \tilde{\chi}_1^0 q$ $\tilde{q}_L o \tilde{\chi}_2^0 q o \tilde{\chi}_1^0 h q o \tilde{\chi}_1^0 b \bar{b} q$

combine $h \rightarrow bb$ with jets to determine other masses

$$\tilde{q}
ightarrow ilde{\chi}_1^0 h q$$
 endpoint

Strategy in SUSY Searches at the LHC:

- Search for multijet + E_Tmiss excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's, long lived sleptons)
- Look for ℓ^{\pm} , ℓ^{+} ℓ^{-} , ℓ^{\pm} ℓ^{\pm} , b-jets, τ 's
- End point analyses, global fit

Models other than SUGRA

GMSB:

- LSP is light gravitino
- Phenomenology depends on nature and lifetime of the NLSP
- Generally longer decay chains, e.g.

$$\tilde{\chi}_2^0 \to \tilde{\ell}^\pm \ell^\mp \to \tilde{\chi}_1^0 \ell^+ \ell^- \to \tilde{G} \gamma \ell^+ \ell^-$$

- models with prompt NLSP decays give add.
 handles and hence are easier than SUGRA
- NLSP lifetime can be measured:
 - For $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, use Dalitz decays (short lifetime) or search for non-pointing photons
 - Quasi stable sleptons: muon system provides excellent "Time of Flight" system

RPV:

- R-violation via $\chi^0_1 \to \ell\ell\nu$ or $qq\ell$, $qq\nu$ gives additional leptons and/or E_T^{miss}
- R-violation via $\chi^0_1 \to cds$ is probably the hardest case; (c-tagging, uncertaities on QCD N-jet background)

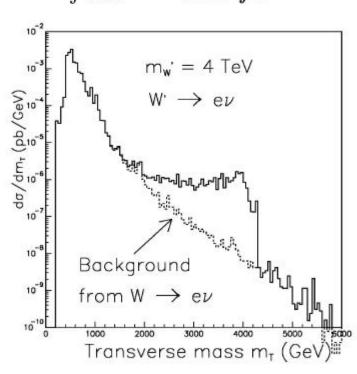
Beyond SUSY, a few examples

Excited quarks: $q^* \rightarrow q\gamma$, up to: $m \sim 6$ TeV

Leptoquarks, up to: $m \sim 1.5 \text{ TeV}$

Monopoles: $pp \rightarrow \gamma \gamma pp$, up to: $m \sim 20 \text{ TeV}$

Lepton flavour viol. $\tau \to \mu \gamma$: $10^{-6} - 10^{-7}$


Compositeness, up to: $\Lambda \sim 40 \text{ TeV}$

from di-jet and Drell-Yan, needs calorimeter linearity better than 2%

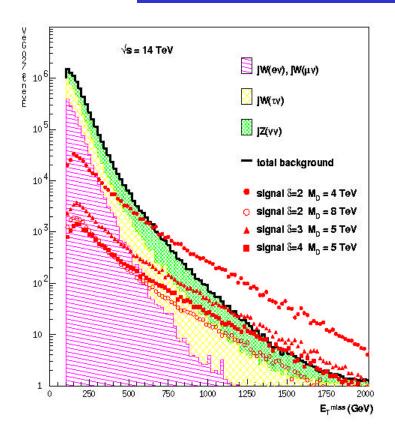
Z' o ll, jj, up to: $m \sim 5$ TeV

 $W' \to l \nu$, up to: $m \sim 6 \text{ TeV}$

$$\int \mathcal{L}dt = 100 \ fb^{-1}$$

Search for Signals from Extra Dimensions

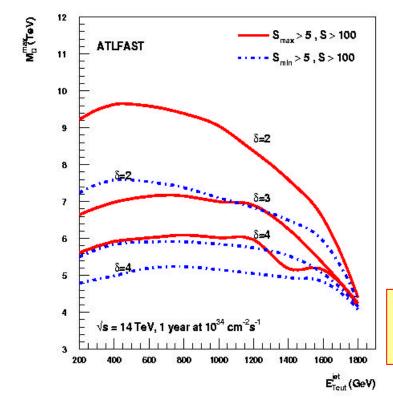
- Much recent theoretical interest in models with extra dimensions
- New physics can appear at the TeV-mass scale,
 i.e. accessible at the LHC
- Gravitons propagating in the extra dimensions will appear as massive states


Examples of searches:

(1) Search for direct graviton production

$$gg \otimes gG, qg \otimes qG, q\overline{q} \otimes Gg$$

 $q\overline{q} \otimes Gg$


- \Rightarrow Jets or Photons with E_{τ}^{miss}
- (2) Search for graviton resonances (Randall Sundrum models)

Search for Graviton Production

Jet + E_Tmiss search:

Main backgrounds:
jet+Z(®m), jet+W®jet+(e,m,t)n

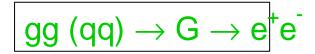
$$G_N^{-1} = 8 p R^d M_D^{2+d}$$

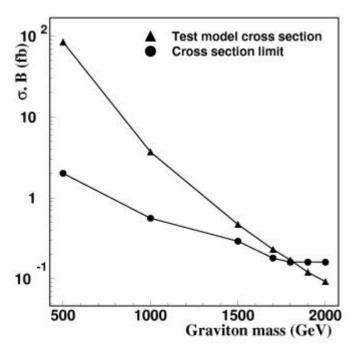
 δ : # extra dimensions M_D = scale of gravity

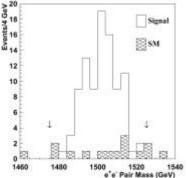
for 100 fb⁻¹:

$$M_D^{\text{max}} = 9.1, 7.0, 6.0$$
 for $d = 2 3 4$

 $(\gamma + E_T^{miss} search is less sensitive)$

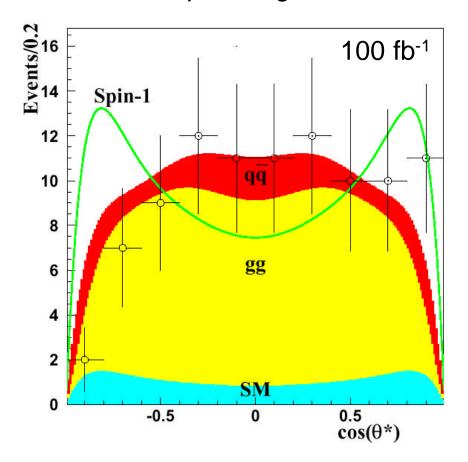

Search for Narrow Graviton Resonances


- use Randall Sundrum model as reference model:
- Kaluza-Klein graviton spectrum with a scale


$$\Lambda_{\pi} = M_{Planck} \exp(-k\pi r_{c})$$

 Properties of the model are determined by the ratio k/M_{Planck}

Atlas and CMS studies on sensitivity to narrow resonance states decaying into lepton pairs:

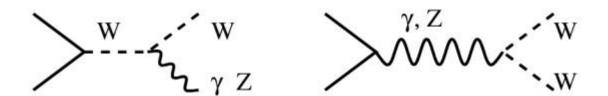


For $k / M_{Planck} = 0.01$ (conservative choice)

With 100 fb⁻¹, signal can be seen in the mass range

Spin determination:

from di-lepton angular distribution


acceptance effects included; use likelihood method to discriminate between spin-1 and spin-2 hypotheses

Spin determination possible up to M ~ 1.7 TeV (100 fb⁻¹, 90%CL)

Conclusions

- 1. The pp experiments at the LHC have a huge discovery potential
 - SM Higgs: full mass range, already at low lumi; Vector boson fusion channels improve the sensitivity significantly
 - MSSM Higgs: parameter space covered; new benchmark scenarios investigated at present
 - SUSY: discovery of TeV-scale SUSY should be easy, determination of model param. is more difficult
 - Exotics: experiments seem robust enough to cope with new scenarios
- 2. Experiments have also a great potential for precision measurements
 - m_W to ~15 MeV - m_{top} to ~ 1 GeV - Δm_H / m_H to 0.1% (100 - 600 GeV)
 - + gauge couplings and measurements in the top sector

Triple Gauge Boson Couplings

- Probe non-Abelian structure of $SU(2) \times U(1)$ and sensitive to New Physics
- general assumptions (Lorentz invariance, P,C inv.): $\Rightarrow WW\gamma$ and WWZ couplings specified by five parameters: $g_1^Z, \lambda_\gamma, \lambda_Z, \kappa_\gamma, \kappa_Z$

 $WW\gamma$ -vertex: related to

- magnetic moment $\mu_W = \frac{e}{2M_W} \left(g_1^Z + \kappa_\gamma + \lambda_\gamma\right)$
- quadrupole moment $Q_W = rac{e}{M_W^2} \; (\kappa_{\gamma} \; \; \lambda_{\gamma})$

Standard Model: $g_1^Z = \kappa_V = 1$ $\lambda_V = 0$

year 2005: known to better than 10⁻² from LEP2+TeVatron

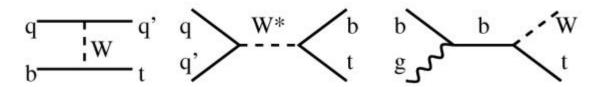
 $W\gamma
ightarrow l
u\gamma
ightharpoonup studied \ WZ
ightarrow l
ull
ightharpoonup studied \ WW
ightarrow l
ul
u
ightharpoonup large <math>tar{t}$ background

- · Sensitivity from:
 - cross section measurements: λ -type, increase with s
 - P_T and angular distributions: constrain κ -type

 $W\gamma$ 30 fb-1 : ~3000 events WZ30 fb-1 : \sim 1200 events $\Delta g_Z^1 = 0.05$ $\lambda_{\gamma} = 0.01$ Events/100 GeV Events/20 GeV 10³ 10 ² 10² 10 10 1 3000 1000 250 500 750 1000 2000 m_{Wγ} (GeV) $p_T^Z (GeV)$

 $\int \mathcal{L}dt = 30 \ fb^{-1}$

Coupling	95% C.L.		
Δg_Z^1	0.008		
λ_{γ}	0.0025		
λ_Z	0.0060		
$\Delta \kappa_{\gamma}$	0.035		
$\Delta \kappa_Z^{'}$	0.070		


Systematics under study

Other measurements in top physics

- Cross section measurement, $\sigma_{t\bar{t}} < 10\%$ (limited by uncertainty on luminosity)
- Sensitivity to FCNC top couplings:

$$BR(t o Zq) < 10^{-4}$$
 $S\sigma$ discovery limit $BR(t o qq) < 10^{-4}$ $S\sigma$ discovery limit S

• Single Top production: $\sigma \sim 300$ pb (40% of $t\bar{t}$)

- probe W − tb vertex,
 ⇒ sensitive to new physics
- measure V_{tb} to \sim 10% (syst. limited)
- measure W, top polarisation
 → anomalous couplings,