Lepton Flavour Violating Z Decays in the MSSM

José I. Illana in collaboration with: Manuel Masip

Universidad de Granada

- Present status of LFV
- SUSY: parametrization of slepton mass matrices
- $Z \rightarrow \ell_I \ell_J$ at DESY TESLA GigaZ
- Bounds from $\ell_J \rightarrow \ell_I \gamma$
- LFV and $(g_{\mu}-2)$
- Summary and conclusions

Status of LFV

$BR(\mu \to e \gamma) < 1.2 \times 10^{-11}$	[MEGA '99]	$BR(\mu \to 3e) < 1.0 \times 10^{-12}$	[SINDRUM '88]
$BR(\tau \to e \gamma) < 2.7 \times 10^{-6}$	[CLEO '99]	${\rm BR}(\tau \to 3e) < 2.9 \times 10^{-6}$	[CLEO '98]
${\rm BR}(\tau \to \mu \gamma) < 1.1 \times 10^{-6}$	[CLEO '00]	${\rm BR}(\tau \to 3\mu) < 1.9 \times 10^{-6}$	[CLEO '98]
R(μ Ti –	$\rightarrow e \mathrm{Ti}) < 6.$	$1 imes 10^{-13}$ [Sindrum '98]	
$BR(Z \to \mu e) < 1.7 \times 10^{-6}$	[OPAL '95]	$< 2.0 \times 10^{-9}$	[C :ap 7]
$BR(Z \to \tau e) < 9.8 \times 10^{-6}$	[OPAL '95]	$\implies < \kappa \times 6.5 \times 10^{-8}$	$\begin{bmatrix} \mathbf{G} \\ \mathbf{G} \\ \mathbf{Z} \end{bmatrix}$
$BR(Z \to \tau \mu) < 1.2 \times 10^{-5}$	[DELPHI '97	$< \kappa \times 2.2 \times 10^{-8}$	$(\kappa = 0.2 - 1.0)$

- Neutrino oscillations (neutral LFV) $\Rightarrow \nu$ SM predicts tiny charged LFV
- SUSY models (unbroken R-parity) \Rightarrow slepton mass matrix natural source of LFV

Aim: $Z \rightarrow \ell_I \ell_J$ | GigaZ potential, independently of origin of SUSY breaking

with constraints dominantly from $\ell_J \rightarrow \ell_I \gamma$ since:

 $\mathsf{BR}(\ell_J \to 3\ell_I) \approx \alpha_{em} \mathsf{BR}(\ell_J \to \ell_I \gamma), \quad \mathsf{R}(\mu \mathsf{Ti} \to e \mathsf{Ti}) \approx 5 \times 10^{-3} \times \mathsf{BR}(\mu \to e \gamma)$

General Lorentz Structure $V \bar{\ell}_I \ell_J$

• Amplitudes for on-shell external legs: one-loop parametrization $[\alpha_W = g^2/(4\pi)]$

$$\mathcal{M}_{Z} = -ig \frac{\alpha_{W}}{4\pi} \varepsilon_{Z}^{\mu} \bar{u}_{\ell_{I}}(p_{2}) \left[\gamma_{\mu} (f_{V}^{Z} - f_{A}^{Z} \gamma_{5}) + \frac{\sigma_{\mu\nu} q^{\nu}}{M_{W}} (if_{M}^{Z} + f_{E}^{Z} \gamma_{5}) \right] u_{\ell_{J}}(p_{1})$$

$$\mathcal{M}_{\gamma} = -ie \frac{\alpha_{W}}{4\pi} \varepsilon_{\gamma}^{\mu} \bar{u}_{\ell_{I}}(p_{2}) \left[\gamma_{\mu} \underbrace{f_{V}^{\gamma}}_{=0 \text{ for } I \neq J} + \frac{\sigma_{\mu\nu} q^{\nu}}{m_{\ell_{J}}} (if_{M}^{\gamma} + f_{E}^{\gamma} \gamma_{5}) \right] u_{\ell_{J}}(p_{1})$$

Dipole form factors (f_M, f_E) are chirality flipping (proportional to a fermion mass)

• Branching ratios $[f_{L,R} = f_V \pm f_A]$

$$\begin{aligned} \mathsf{BR}(Z \to \bar{\ell}_{I}\ell_{J} + \ell_{I}\bar{\ell}_{J}) &= \underbrace{\frac{\alpha_{W}^{3}M_{Z}}{48\pi^{2}\Gamma_{Z}}}_{\mathcal{O}(10^{-6})} \left[|f_{L}^{Z}|^{2} + |f_{R}^{Z}|^{2} + \frac{1}{c_{W}^{2}} (|f_{M}^{Z}|^{2} + |f_{E}^{Z}|^{2}) \right] \\ \mathsf{BR}(\ell_{J} \to \ell_{I}\gamma) &= \frac{12\alpha}{\pi} \frac{M_{W}^{4}}{m_{\ell_{J}}^{4}} \left(|f_{M}^{\gamma}|^{2} + |f_{E}^{\gamma}|^{2} \right) \times \underbrace{\mathsf{BR}(\ell_{J} \to \ell_{I}\nu_{J}\bar{\nu}_{I})}_{=1/0.17/0.17 \text{ for } \mu e/\tau e/\tau \mu} \end{aligned}$$

• For $\ell \equiv \ell_I = \ell_J$, anomalous magnetic dipole moment $a_\ell = (g_\ell - 2)/2 = \frac{\alpha_W}{4\pi} f_M^{\gamma}$

Standard Model + massive neutrinos

$$\mathcal{M} \propto \sin^2 2\theta \; \frac{\Delta m_{IJ}^2}{M_W^2}$$

 ℓ_J

 ℓ_I

Ø

Oscillation data \Rightarrow BR $(\ell_J \rightarrow \ell_I \gamma) \lesssim 10^{-48}$ BR $(Z \rightarrow \ell_I \ell_J) \lesssim 10^{-54}$

hopeless!

- $(ilde{\chi}^{\pm}_{A=1,2}$; $ilde{
 u}_{X=1,2,3}$ 'L') Charginos-sneutrinos Neutralinos–charged sleptons $(\tilde{\chi}^0_{A=1,2,3,4}$; $\tilde{\ell}_{X=1,...,6}$ 'L' and 'R')
- (A)+(B)+(C): ultraviolet finite and decoupling of heavy SUSY particles
- (C) no contribution to $\ell_J \rightarrow \ell_I \gamma$ (no dipole structure)

• FCNC/LFV $(\ell_I \neq \ell_J) \Leftrightarrow \begin{cases} \text{slepton family mixing} \\ \text{slepton mass splitting (non-degeneracy)} \end{cases}$

(LL, RR, LR)

Slepton mass matrices

$$\mathbf{M}_{\tilde{\nu}}^{2} = (\mathbf{m}_{\tilde{\nu}_{L}}^{2})_{3\times3} \qquad \mathbf{M}_{\tilde{\ell}}^{2} = \begin{pmatrix} \mathbf{m}_{LL}^{2} & \mathbf{m}_{LR}^{2T} \\ \mathbf{m}_{LR}^{2} & \mathbf{m}_{RR}^{2} \end{pmatrix}_{6\times6} \qquad \text{(symmetric)}$$

$$(\mathbf{m}_{\tilde{\nu}_{L}}^{2})_{IJ} = (\mathbf{m}_{L}^{2})_{IJ} + \frac{1}{2}M_{Z}^{2}c2\beta \ \delta_{IJ} \qquad (\mathbf{m}_{LL}^{2})_{IJ} = (\mathbf{m}_{L}^{2})_{IJ} + \left[m_{\ell_{I}}^{2} + \left(-\frac{1}{2} + s_{W}^{2} \right) M_{Z}^{2}c2\beta \right] \delta_{IJ} \\ (\mathbf{m}_{RR}^{2})_{IJ} = (\mathbf{m}_{R}^{2})_{IJ} + \left[m_{\ell_{I}}^{2} - M_{Z}^{2}c2\beta s_{W}^{2} \right] \delta_{IJ} \\ (\mathbf{m}_{RR}^{2})_{IJ} = (\mathbf{m}_{R}^{2})_{IJ} + \left[m_{\ell_{I}}^{2} - M_{Z}^{2}c2\beta s_{W}^{2} \right] \delta_{IJ} \\ (\mathbf{m}_{LR}^{2})_{IJ} = (\mathbf{A}_{\ell})_{IJ} \ v \cos\beta/\sqrt{2} - m_{\ell_{I}}\mu \tan\beta \ \delta_{IJ}$$

Assume two-generation mixing (IJ) and no alignment between fermion and scalar fields \Rightarrow

$$\mathbf{M}_{\tilde{\nu}}^{2} = \tilde{m}^{2} \begin{pmatrix} 1 & \cdot \\ \delta_{LL}^{\tilde{\nu} IJ} & 1 \end{pmatrix}; \qquad \mathbf{M}_{\tilde{\ell}}^{2} = \tilde{m}^{2} \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \delta_{LL}^{\tilde{\ell} IJ} & 1 & \cdot & \cdot \\ \delta_{LR}^{\tilde{\ell} II} & \delta_{LR}^{\tilde{\ell} IJ} & 1 & \cdot \\ \delta_{LR}^{\tilde{\ell} JI} & \delta_{LR}^{\tilde{\ell} IJ} & \delta_{RR}^{\tilde{\ell} IJ} & 1 \end{pmatrix} \qquad \operatorname{sin} 2\theta = 1$$

and only one $\delta \neq 0$: $\tilde{m}_{1,2}^2 = \tilde{m}^2(\sqrt{1+\delta^2} \mp \delta) \iff \delta = \frac{\tilde{m}_2^2 - \tilde{m}_1^2}{2\tilde{m}^2}; \quad \tilde{m}^2 = \tilde{m}_1 \tilde{m}_2$

Calculation

- Analytical expressions in terms of generic couplings and one-loop tensor integrals, implemented with complete MSSM Feynman rules (full chargino and neutralino mixings)
- Constraints on SUSY masses [PDB]:

lightest slepton (\tilde{m}_1)	$m_{\tilde{\nu}} > 45 \mathrm{GeV}$
	$m_{{\tilde \ell}_{L,R}} > 90~{ m GeV}$ *
lightest chargino	$m_{ ilde{\chi}_1^+} > 75$ GeV, if $m_{ ilde{ u}} > m_{\chi_1^+}$
	$>45~{ m GeV}$, otherwise
lightest neutralino	$m_{ ilde{\chi}_1^0} > 35~{ m GeV}$

- * $m_{\tilde{\nu}}^2 = m_{\tilde{\ell}_L}^2 + M_Z^2 c_W^2 \cos 2\beta \Rightarrow m_{\tilde{\nu}} > 65 \ (40) \text{ GeV for } \tan \beta = 2 \ (50)$
- Inputs: M_2 , μ , $\tan \beta$ (spectra and couplings of charginos/neutralinos), \tilde{m}_1 (relevant lightest scalar mass), δ (LFV parameter)
- **Dominating diagrams** (mass insertion method): proportional to δ (if small) diag

SUSY predictions for $Z \rightarrow \ell_I \ell_J$

- Ignoring other LFV processes:
 - Maximal effects for a decoupled second family $(\delta^{IJ} \rightarrow \infty)$
 - Chargino-sneutrino diagrams dominate by $\mathcal{O}(10)$ Results almost independent of lepton masses Mild dependence on $\tan \beta$

$$\checkmark$$
 BR $(Z \rightarrow \ell_I \ell_J)$ up to $2.5 \times 10^{-8} (7.5 \times 10^{-8})$ for $\tan \beta = 2 (50)$

- $\sqrt{\mathsf{BR}(Z \to \ell_I \ell_J)} > 2 \times 10^{-9} \ (2 \times 10^{-8}) \text{ for } m_{\tilde{\nu}} < 305 \ (85) \text{ GeV}, \ m_{\tilde{\chi}_1^+} < 270 \ (105) \text{ GeV}$
- Cancellations: contributions from different particles have opposite signs
- plot

• Correlation with $\ell_J
ightarrow \ell_I \gamma$:

$$\textbf{BR}(\mu \to e\gamma) < 1.2 \times 10^{-11} \Rightarrow \textbf{BR}(Z \to \mu e) < 1.5 \times 10^{-10}$$

BR($Z \rightarrow \tau e; \tau \mu$) at reach of best projection of GigaZ ($\kappa < 1$) with BR($\tau \rightarrow e\gamma; \mu\gamma$) \ll present limits plot

$$\begin{array}{c} \textbf{BR}(Z \to \tau \mu) \& \textbf{BR}(\tau \to \mu \gamma) \\ \hline \textbf{BR}(Z \to \tau \mu) & \delta_{LL}^{\tilde{\nu} 23} \to \infty \\ \hline \textbf{GigaZ} (\kappa = 1) \\ \hline \textbf{GigaZ} (\kappa = 1) \\ \hline \textbf{GigaZ} (\kappa = 0.2) \\ \hline \textbf{GigaZ} ($$

٦

Bounds from $\ell_J \rightarrow \ell_I \gamma$

- Provide most stringent constraints on slepton LFV mass terms (today)
- Establish how severe is the **flavour problem** in the lepton sector of the MSSM
- Aim: update works by [Masiero *et alter* '86−'96] (only photino–mediated diagrams) with complete MSSM ⇒ frequent cancellations
 e.g. plot
- Bounds involving the **first two families** are very restrictive **table**

 $\begin{array}{rcl} \delta_{LL}^{\tilde{\nu}\ 12} \text{ , } \delta_{LL}^{\tilde{\ell}\ 12} \text{ , } \delta_{RR}^{\tilde{\ell}\ 12} & : & \mathcal{O}(10^{-3} \dots 10^{-5}) & \text{stronger for high } \tan\beta \\ & & \delta_{LR}^{\tilde{\ell}\ 12} & : & \mathcal{O}(10^{-6}) & \text{ independent of } \tan\beta \end{array}$

• Bounds involving the **third family** are much weaker (or **unexistent**!)

		low $ aneta$	high $ aneta$
$\delta_{LL}^{\tilde{\nu}I3}$:	∞	0.03 to 1.3
$\delta_{LL}^{ ilde{\ell}I3}$:	∞	0.14 to 🗙
$\delta_{RR}^{ ilde{\ell}I3}$:	∞	0.11 to 🗙
$\delta_{LR}^{ ilde{\ell}I3}$:	0.05	to \infty

Bounds from $\mu ightarrow e \gamma < 1.2 imes 10^{-11}$

		$\delta_{LL}^{ ilde{ u} {f 12}}$				$\delta_{LL}^{ ilde{\ell} {f 12}}$			
\tilde{m}_1	M_2	$\mu = -500$	$\mu=-150$	$\mu=150$	$\mu=$ 500	$\mu=-500$	$\mu=-150$	$\mu=$ 150	$\mu=$ 500
		$\tan \beta = 2$				an eta = 2			
100	150	14×10^{-3}	1.0×10^{-3}	0.3×10^{-3}	1.0×10^{-3}	7.5×10^{-3}	2.6×10^{-3}	1.7×10^{-3}	5.0×10^{-3}
	500	33×10^{-3}	3.0×10^{-3}	1.7×10^{-3}	13×10^{-3}	84×10^{-3}	11×10^{-3}	7.0×10^{-3}	41×10^{-3}
500	150	3.7×10^{-3}	1.1×10^{-3}	1.2×10^{-3}	1.7×10^{-3}	14×10^{-3}	8.5×10^{-3}	0.12 (P)	32×10^{-3}
	500	7.3×10^{-3}	2.6×10^{-3}	2.3×10^{-3}	4.1×10^{-3}	24×10^{-3}	20×10^{-3}	32×10^{-3}	26×10^{-3}
			aneta	= 50			aneta	= 50	
100	150	9.3×10^{-5}	2.1×10^{-5}	2.0×10^{-5}	8.6×10^{-5}	2.4×10^{-4}	0.8×10^{-4}	0.8×10^{-4}	2.4×10^{-4}
	500	80×10^{-5}	9.0×10^{-5}	8.8×10^{-5}	77×10^{-5}	24×10^{-4}	3.5×10^{-4}	3.4×10^{-4}	23×10^{-4}
500	150	9.7×10^{-5}	4.5×10^{-5}	4.5×10^{-5}	9.4×10^{-5}	7.4×10^{-4}	6.4×10^{-4}	6.9×10^{-4}	7.6×10^{-4}
	500	22×10^{-5}	9.6×10^{-5}	9.5×10^{-5}	21×10^{-5}	9.7×10^{-4}	9.6×10^{-4}	9.8×10^{-4}	9.7×10^{-4}
			$\delta_{E}^{ ilde{\ell}}$	12 2 <i>R</i>			$\delta_L^{ ilde\ell}$	12 R	
\tilde{m}_1	M_2	$\mu = -500$	$\delta_{H}^{ ilde{m{ extsf{ extsf extsf{ extsf{ extsf extsf{ extsf exts$	$\mu = 150$	$\mu = 500$	$\mu = -500$	$\delta_L^{ ilde{m{ eta}}}$ $\mu=-150$	$\frac{12}{R}$ $\mu = 150$	$\mu = 500$
\tilde{m}_1	M_2	$\mu = -500$	$\delta_{F}^{ ilde{m{ extsf{ extsf} extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf} exts$	$\frac{12}{\mu} = 150$ $\beta = 2$	$\mu = 500$	$\mu = -500$	$\delta_L^{ ilde{\ell}}$ $\mu = -150$ $ aneta$	$\mu = 150$ $\mu = 2$	$\mu = 500$
	М ₂ 150	$\mu = -500$ 4.2×10^{-3}	$\delta_{F}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-3}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3}	$\mu = 500$ 3.7×10^{-3}	$\mu = -500$ 1.6×10^{-6}	$\delta_{L}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-6}	$ \begin{array}{c} 12\\ R\\ \mu = 150\\ 3 = 2\\ 1.6 \times 10^{-6}\\ \end{array} $	$\mu = 500$ 1.7×10^{-6}
	M ₂ 150 500	$\mu = -500$ 4.2×10^{-3} 11×10^{-3}	$\delta_{F}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3}	$\mu = 500$ 3.7×10^{-3} 8.3×10^{-3}	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6}	$\delta_{L}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6}	$ \begin{array}{c} 12\\ R\\ \mu = 150\\ 3 = 2\\ 1.6 \times 10^{-6}\\ 4.7 \times 10^{-6}\\ \end{array} $	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6}
	M ₂ 150 500 150	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3}	$\delta_{\rm F}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3} 22×10^{-3}	$\mu = 500$ 3.7×10^{-3} 8.3×10^{-3} 0.33	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6}	$\delta_{L}^{\tilde{\ell}}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6}	$\mu = 150$ $\mu = 150$ $B = 2$ 1.6×10^{-6} 4.7×10^{-6} 1.2×10^{-6}	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6}
	M ₂ 150 500 150 500	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3} 19×10^{-3}	δ_{F}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3} 12×10^{-3}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3} 22×10^{-3} 0.33	$\mu = 500$ 3.7 × 10 ⁻³ 8.3 × 10 ⁻³ 0.33 35 × 10 ⁻³	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6} 7.6×10^{-6}	δ_{L}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6} 7.5×10^{-6}	$\mu = 150$ $\mu = 150$ $B = 2$ 1.6×10^{-6} 4.7×10^{-6} 1.2×10^{-6} 7.6×10^{-6}	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6} 7.7×10^{-6}
<u>m</u> ₁ 100 500	M ₂ 150 500 150 500	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3} 19×10^{-3}	δ_{F}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3} 12×10^{-3} $\tan \beta$	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3} 22×10^{-3} 0.33 $= 50$	$\mu = 500$ 3.7 × 10 ⁻³ 8.3 × 10 ⁻³ 0.33 35 × 10 ⁻³	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6} 7.6×10^{-6}	δ_{L}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6} 7.5×10^{-6} $\tan \beta$	$ \begin{array}{c} 12\\ R\\ \mu = 150\\ 3 = 2\\ \hline 1.6 \times 10^{-6}\\ 4.7 \times 10^{-6}\\ 1.2 \times 10^{-6}\\ 7.6 \times 10^{-6}\\ = 50\\ \end{array} $	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6} 7.7×10^{-6}
	M ₂ 150 500 150 500 150	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3} 19×10^{-3} 1.6×10^{-4}	$\delta_{\rm F}^{\ell}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3} 12×10^{-3} $\tan \beta$ 0.6×10^{-4}	$\mu = 150$ 0.5×10^{-3} $\mu = 150$	$\mu = 500$ 3.7 × 10 ⁻³ 8.3 × 10 ⁻³ 0.33 35 × 10 ⁻³ 1.5 × 10 ⁻⁴	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6} 7.6×10^{-6} 1.6×10^{-6}	δ_{L}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6} 7.5×10^{-6} $\tan \beta$ 1.5×10^{-6}	$ \begin{array}{c} 12\\ R\\ \mu = 150\\ 3 = 2\\ \hline 1.6 \times 10^{-6}\\ 4.7 \times 10^{-6}\\ 1.2 \times 10^{-6}\\ 7.6 \times 10^{-6}\\ = 50\\ \hline 1.6 \times 10^{-6}\\ \end{array} $	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6} 7.7×10^{-6} 1.6×10^{-6}
	M_2 150 500 150 500 150 500	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3} 19×10^{-3} 1.6×10^{-4} 3.8×10^{-4}	$\delta_{\rm F}^{\ell}$ $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3} 12×10^{-3} $\tan \beta$ 0.6×10^{-4} 1.1×10^{-4}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3} 22×10^{-3} 0.33 $= 50$ 0.6×10^{-4} 1.1×10^{-4}	$\mu = 500$ 3.7 × 10 ⁻³ 8.3 × 10 ⁻³ 0.33 35 × 10 ⁻³ 1.5 × 10 ⁻⁴ 3.8 × 10 ⁻⁴	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6} 7.6×10^{-6} 1.6×10^{-6} 4.5×10^{-6}	δ_{L}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6} 7.5×10^{-6} $\tan \beta$ 1.5×10^{-6} 4.5×10^{-6}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.6×10^{-6} 4.7×10^{-6} 1.2×10^{-6} 7.6×10^{-6} $= 50$ 1.6×10^{-6} 4.6×10^{-6}	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6} 7.7×10^{-6} 1.6×10^{-6} 4.5×10^{-6}
	M_2 150 500 150 500 150 500 150	$\mu = -500$ 4.2×10^{-3} 11×10^{-3} 22×10^{-3} 19×10^{-3} 1.6×10^{-4} 3.8×10^{-4} 16×10^{-4}	δ_{F}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-3} 3.2×10^{-3} 10×10^{-3} 12×10^{-3} $\tan \beta$ 0.6×10^{-4} 1.1×10^{-4} 13×10^{-4}	$\mu = 150$ $\mu = 150$ $\beta = 2$ 1.8×10^{-3} 2.5×10^{-3} 22×10^{-3} 0.33 $= 50$ 0.6×10^{-4} 1.1×10^{-4} 15×10^{-4}	$\mu = 500$ 3.7 × 10 ⁻³ 8.3 × 10 ⁻³ 0.33 35 × 10 ⁻³ 1.5 × 10 ⁻⁴ 3.8 × 10 ⁻⁴ 17 × 10 ⁻⁴	$\mu = -500$ 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6} 7.6×10^{-6} 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6}	δ_{L}^{ℓ} $\mu = -150$ $\tan \beta$ 1.5×10^{-6} 4.4×10^{-6} 1.2×10^{-6} 7.5×10^{-6} $\tan \beta$ 1.5×10^{-6} 4.5×10^{-6} 1.2×10^{-6} 1.2×10^{-6}	$\mu = 150$ 4.7×10^{-6} 1.2×10^{-6} 7.6×10^{-6} $= 50$ 1.6×10^{-6} 4.6×10^{-6} 1.2×10^{-6}	$\mu = 500$ 1.7×10^{-6} 4.6×10^{-6} 1.2×10^{-6} 7.7×10^{-6} 1.6×10^{-6} 4.5×10^{-6} 1.3×10^{-6}

LFV and
$$(g_{\mu}-2)$$

World average:
$$a_{\mu}^{\exp} = \underbrace{11\ 659\ 202.3\ (15.1) \times 10^{-10}}_{11\ 659\ 203\ (8) \times 10^{-10}}$$

s $\delta a_{\mu} = \underbrace{(23.1 \pm 16.9)}_{24} \times 10^{-10}$
s M prediction: $a_{\mu}^{SM} = 11\ 659\ 179.2\ (9.4) \times 10^{-10}$

• $(g_{\mu} - 2) \approx$ 'normalization' of LFV lepton decays (small deltas): (similar diagrams \Rightarrow replace $\delta_{LR}^{\tilde{\ell} IJ}$ by $\delta_{LR}^{\tilde{\ell} 22}$ and remove all other delta insertions)

•
$$\delta a_{\mu}^{\text{SUSY}} = \delta a_{\mu} \Rightarrow \text{large uncertainties}$$

- SM prediction
- Extra assumptions:
 - * take same mass scales \tilde{m} involved in $(g_{\mu} 2)$ as in $\mu \to e\gamma$ or $\tau \to \mu\gamma$
 - * soft-breaking terms m_L and m_R involved at the same time in $(g_\mu 2)$
- But taking present results seriously ...

$(g_{\mu}-2)$ and SUSY

• Positive Higgsino mass parameter μ preferred (now even more with new BNL data)

$\mathsf{BR}(Z o au\mu)$ & $(g_\mu-2)$: very speculative!

• Assuming $m_L = m_R$: the favourite scenario for $Z \rightarrow \tau \mu$ in GigaZ restricted to higher slepton masses (or practically ruled out by new BNL data)

Summary and conclusions

- Slepton sector of SUSY (soft-breaking terms) provides a natural source of LFV: effects \approx proportional to slepton mass squared differences (degeneracy δ)
- Our calculation:
 - $Z \rightarrow \ell_I \ell_J$ realistically correlated with $\ell_J \rightarrow \ell_I \gamma$ in SUSY models (no SUSY-breaking mechanism assumed and exact beyond mass insertion approx.)
 - update to include complete MSSM (several δ types) and more recent experiments
- GigaZ reach:
 - $Z \rightarrow \mu e$ excluded by $\mu \rightarrow e\gamma$ not by limits on SUSY masses
 - $Z \rightarrow \tau e; \tau \mu$ possible ($\kappa < 1$) thanks to chargino-sneutrino contributions
- Best bounds from $\ell_J \rightarrow \ell_I \gamma \Rightarrow$ SUSY lepton flavour problem?
 - Non-observation of $\mu \to e\gamma \Rightarrow \left| \delta_{LL,RR,LR}^{\tilde{\nu}|\tilde{\ell}|12} \approx 10^{-3} \dots 10^{-6} \right|$ (large degeneracy!)
 - ... maybe justifiable by weakness of Yukawas of light lepton sector
 - Non-observation of $\tau \to e\gamma; \mu\gamma \Rightarrow$ very weak (even unexistent) constraints on δ^{I3} s