Achim G. Denig Universität Karlsruhe RADCOR 2002 Kloster Banz, Sept. 8-13 2002

Measuring Hadronic Cross Sections via Radiative Return

- Radiative Return
- KLOE Measurement ($\pi^+\pi^-$)
- BABAR, Summary

RADIATIVE RETURN

► Particle factories have the opportunity to measure the cross-section $\sigma(e^+ e^- \rightarrow hadrons)$ as function of the hadronic c.m.s energy M²_{hadrons} by using the <u>radiative return method</u>.

This method (S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999) is a <u>complementary approach</u> to the standard energy scan.

disadvantage

Requires precise calculations of ISR

EVA + Phokhara MC Generator

Requires good suppression of FSR

advantage

Data comes as by-product of standard program

Radiative Corrections have to be calculated only

and NOT for each point of s

Systematic errors from Luminosity, \sqrt{s} , ... enter only once

→ In August this year the new measurement of a_{μ} and new theoretical estimates have been presented to the community

New Measurements

- ► Very interesting new e+e- data has lowered the theoretical error for the muon anomaly
- Cross check of low energy cross section data mandatory to understand 3.0 σ effect !

FOUNKLOE -

We perform an **absolute cross section measurement** for the $\pi^+\pi^-\gamma$ final state which requires to study the following analysis items:

We divide the $\pi^+\pi^-\gamma$ cross section by the radiation function $H(M_{\pi\pi}^2)$ which is obtained from the MC generator Phokhara (next talk by Czyz) by setting $F_{\pi} = 1$.

$$\left|F_{\pi}(M_{\pi\pi}^{2})\right|^{2} = \frac{d\sigma_{\pi\pi\gamma}(M_{\pi\pi}^{2})}{H_{i}(M_{\pi\pi}^{2})} = \frac{d\sigma_{\pi\pi\gamma}(M_{\pi\pi}^{2})}{d\sigma_{\pi\pi\gamma,F_{\pi}=1}(M_{\pi\pi}^{2})}$$

SIGNAL SELECTION

For the selection of the $\pi\pi\gamma$ - Signal two fiducial volume regions have been worked out:

Pion Tracks are measured at angles $40^{\circ} < \theta_{\pi} < 140^{\circ}$

- ∠ Large angle (LA): $55^{\circ} < \theta_{\gamma} < 125^{\circ}$ allows a tagging of the radiative photon
- ∠ <u>Small angle (SA)</u>: $θ_{\pi\pi} < 15^{\circ}$ or $θ_{\pi\pi} > 165^{\circ}$ photon cannot be efficiently detected with EmC **untagged measurement** in which we cut on the missing momentum $θ_{\pi\pi}$

In this presentation I will concentrate on the **small angle analysis** which is in a very advanced state and which allows to cover $0.28 \ GeV^2 < M^2_{\pi\pi} < 1.0 \ GeV^2$

- ➡ The two kinematical regions differ for:
 - $\pi\pi\gamma$ cross sections (SA: 21nb, LA: 3nb)
 - background contamination
 - $M^2_{_{\pi\pi}}$ spectrum shape
 - relative contribution of FSR

BACKGROUND

- The main source of background are **Radiative Bhabha events** which enter our $\pi\pi\gamma$ selection
- A likelihood method has been worked out which allows an efficient separation of pions from electrons

Method uses information from the EmCalorim.:

- Time of Flight of Tracks
- Signature of the energy deposit of Tracks
- Effect of the Method becomes visible in the Trackmass distribution which is a kinematical variable obtained by solving 4-momentum-conservation:

BACKGROUND

 remaining contamination (tails in selection interval) estimated from MC (below 1 %)

Radiative Return

We analyzed 73 pb⁻¹ of 2001 data according to the analysis items discussed

after selection: **1 083 834 events** KLOE data set by 09/02: ca. *500 pb*⁻¹ 50 bins with statistical error/bin < 1% for $M_{\pi\pi}^2 > 0.45 GeV^2$

► Normalizing to Luminosity and dividing by the Radiation Function $H(M_{\pi\pi}^2)$ gives the Pion Form Factor

→ m_{ρ} , Γ_{ρ} α, β are free parameters of the fit, while $m_{\omega}\Gamma_{\omega}m_{\rho'}$, $\Gamma_{\rho'}$ are fixed to CMD-2 values

COMPARISON CMD-2

- ➡ Refinements:
- Unfolding of spectrum
- Residual Background Subtraction
- Systematics due to Acceptance Cuts
- Fit to Gounaris-Sakurai

Qualitatively:

excellent agreement with CMD-2 !

<u>**Ouantitatively</u>**: CMD2 uses Gounaris-Sakurai, thus different fit results:</u>

 $\begin{array}{l} & \textbf{M}_{\rho} = 776.09 \pm 0.81 \ \text{MeV} \\ & \boldsymbol{\Gamma}_{\rho} = 144.46 \pm 1.55 \ \text{MeV} \\ & \textbf{M}_{\rho} = 0.7726 \pm 0.0005 \ \text{GeV} \\ & \boldsymbol{\Gamma}_{\rho} = 0.1437 \pm 0.0007 \ \text{GeV} \end{array}$

LUMINOSITY MEASUREMENT

* C.M.C. Calame et.al. Nucl. Phys., B 584 (2000)

Thanks to Oliver Buchmüller / SLAC

BABAR MEASUREMENT

► BABAR ($\sqrt{s} = 10.58 \text{ GeV}$) can access via radiative return whole energy range of interest for a_{μ} but also a big part of the hadronic contribution of the fine structure const. $\alpha_{\text{hadr.}}$

channels under study: $\pi^+\pi^-$, $\pi^+\pi^-2\pi$, K^+K^- , $p \overline{p}$, $K^+K^-\pi^0$, 3π , 5π , 6π , 7π ,

► If the 2π contribution < 1 GeV can be kept on the level of some permille, the error coming from the 4π contribution < 2GeV is becoming one of the dominating limitations for a_{μ} AND NO DIRECT MEASUREMENT in this energy range (PEP-N project not approved!)

FOUR PIONS

Radiative Return is a complementary new Method to measure Hadronic Cross Sections and is currently performed at the ϕ - factory DA Φ NE and the b - factory PEP-II

KLOE @ DA Φ NE presented a preliminary result on the fit to the Pion Form Factor which is in good agreement with CMD-2

BABAR @ PEP-II shows very encouraging results for different final states; of special interest is the **4-pion final state** which has a non - neglibile contribution to a_u

Experimental and Theoretical groups are in close contact to improve systematics of the measurement and to allow an interpretation for the evaluation of the hadronic contribution to a_{μ} .

Improved results are expected for the end of 2002 ! Very interesting to see how much the **systematic errors** can be reduced ?