

Electro-weak precision measurements in e⁺e⁻ annihilation into bosons

Roberto Chierici

CERN

on behalf of the LEP collaborations

- Four fermion processes: cross-sections and boson couplings
- > The W mass and the (in)direct hunt for the Higgs

RADCOR02, 10th September 2002

Collected data

Collected statistics per experiment in the period 1996-2000:

⇒ Integrated luminosity per experiment ~700 pb⁻¹

The presented results are preliminary and obtained with full statistics unless differently indicated

CC03 final states

√s (GeV)

Channel	BR(%)	٤ (%)	p (%)
qqqq	45.6	~85	~80
qqlv	43.8	~70	~95
Iv Iv	10.6	~60	~85

Use O(α) EW corrections in DPA ($\delta\sigma_{WW}$ ~0.5%) (RacoonWW, YFSWW)

Excellent agreement between predictions and data

 $\Rightarrow \sigma_{ww}$ measurement at LEP2 can test theory at the \leq 1% level

Comparison with theory: R_{W/W/}

Correlated (energy/experiment) average of $R_{ww} = \sigma_{meas}/\sigma_{theory}$ gives indication of the global accuracy from data Measured oww / RacoonWW

 $R_{WW} = (0.999 \pm 0.065_{stat} \pm 0.090_{syst})$ -RacoonWW-

 $R_{ww} = (0.978 \pm 0.011)$ KoralW at LEP

- ⇒ measurement is dominated by the systematic errors
- ⇒ particularly worrying are the correlated errors (fragmentation, detector)
- ⇒ ongoing work towards the final results 0.9% is in our reach ...
- ⇒ final accuracy allows sensitivity to the more correct implementation of $O(\alpha)!$

YFSWW agrees at 0.2% level

Roberto Chierici

W angular distributions

O(α) corrections introduce important distortion in the W angular distributions (2% steeper slope!) \Rightarrow towards a LEP d σ /d ϑ _w. LEP combination

Only qqe v_e , qq μv_{μ} channels with $\vartheta_{e,\mu} > 20^{\circ}$ are used:

- o high purity final states
- o cleaner W charge reconstruction
- o use only detected phase space

CALO5 photon recombination scheme used to 'define' a W

Combine in energy intervals to increase statistics

 \Rightarrow will be able to test slopes at <2% level, direct comparison with future calculations

Charged Triple Gauge Couplings

To test the non-abelian structure of the SM and find signals of new physics

Single parameter fit results:

$$g_1^z = 0.998^{+0.023}_{-0.025}$$
 [1]_{SM}

$$\lambda_{\gamma} = -0.020^{+0.024}_{-0.024} \quad [0]_{SM}$$

$$\kappa_{\gamma} = 0.943^{+0.055}_{-0.055} \quad [1]_{SM}$$

main systematic: $O(\alpha)$ corrections

- > full effect still used as conservative estimation $(\delta g_1^z = 0.015, \delta \lambda_{\gamma} = 0.015, \delta \kappa_{\gamma} = 0.039)$
- > ongoing studies at parton and full-sim level suggest much smaller relative uncertainties

NC02 final states

2% theory uncertainty compares to ~5% experimental total precision

Other 4f phase space

Other regions of the phase space are studied: signals are defined with cuts

Lower cross-section SM processes can be investigated to ~5-10% accuracy

Probing the QGC

Signal definition:

- \gt E_{γ} \gt 5 GeV
- $> |\cos(\vartheta_{\gamma})| < 0.95$
- >cos(γ , closest charged f) < 0.90
- $> |m(f,f') m_W| < 2\Gamma_W$

 $E_{\gamma \prime}$ $\sigma_{WW\gamma}$ used for limits on QGC $WW\gamma\gamma$

 $a_0^W/\Lambda^2 \in$ [-0.031, 0.030] GeV⁻² @95% $a_c^W/\Lambda^2 \in$ [-0.069, 0.070] GeV⁻² @95% $a_n/\Lambda^2 \in$ [-0.45, 0.41] GeV⁻² @95%

From Zγγ limits on ZZγγ couplings are also determined:

 $a_0^{\rm Z}/\Lambda^2 \in$ [-0.009, 0.026] GeV⁻² @95% $a_c^{\rm Z}/\Lambda^2 \in$ [-0.034, 0.046] GeV⁻² @95%

Two photon production

Pure QED, small higher order corrections

A good place to look for new physics:

- ➤ low scale gravity
- > excited electrons

Straightforward selection...

do/dΩ (pb/srad)

$$\sigma_{\text{meas}}/\sigma_{\text{th}}=0.982\pm0.010$$
 almost final results...

Graviton mass limit $\sim 1 \text{ TeV}$ QED cut-off $\Lambda_{+,-}>400 \text{ GeV}$

Various models can be tested by using the measured differential distributions

W mass

The W mass is extracted through direct reconstruction of the resonance via:

- 1. constrained kinematical fits (qqqq, qqlv)
- 2. lepton energy distributions $(l_1v_1l_2v_2)$

The methods to determine m_w , Γ_w :

- 1. Reweighed MC fit to data
- 2. M-L fit with BW⊗ISR⊗resolution

(m_W is determined assuming SM $\Gamma_W(m_W)$, Γ_W in a 2-D fit)

Energies, experiments, channels are combined accounting for correlations of systematics:

- ➤ large systematics in the qqqq channel
- combination dominated by qqlv
- ⇒ Better accuracy on m_w relies on the ongoing work on the systematic part

W mass error breakdown

Main sources of systematics:

- > FSI (qqqq only)
- hadronisation
- > LEP beam energy

correlation in energy/experiment/ channels makes the rest...

The measurement is systematic-limited...

Total systematic \sim total statistic = 30 MeV The weight of the qqqq channel is 9% only! In absence of systematic, δm_w would be 22 MeV!

Main systematics to fight with

<u>Hadronisation modelling</u>: compare different models (HERWIG, JETSET, ARIADNE) and consider the largest effect as indication of the systematic error $\Rightarrow \delta m_w = 18$ MeV combined, can it be reduced?

<u>LEP beam energy</u>: induces a systematic error because of the kinematical fits. $\delta m_W/m_W = \delta E_b/E_b \Rightarrow \delta E_b \sim 21 \text{ MeV} \rightarrow \delta m_W \sim 17 \text{ MeV}$ (The error on the energy comes from the extrapolation to high energy of resonant depolarization beam energy measurement at 60 GeV)

FSI: at LEP2 the decay distance between the two Ws (\sim 0.1 fm) is smaller than the typical hadronisation scale or the radius in which BE effects γ , z start to take place

⇒ The two Ws are not independent systems!

how well do we know/model these effects? can we exclude/measure them from our data?

(Mainly affect low momentum particle spectra)

Colour Reconnection

Several models: string based (SKI,II), colour dipoles (ARIADNE), cluster based (HERWIG). Shifts on $m_W(qqqq)$ from the models range from 30 MeV (HERWIG)

to 300 MeV (SKI, 100% reconnection probability)

⇒ study jet reconstruction methods less sensitive to CR effects

Roberto Chierici

Bose-Einstein effect

BEC are well established at the Z

For boson pair production only BEC between Ws affect the mass determination

⇒ Study two particle correlation functions

Current error is 35 MeV but no clear indication of a significant effect from the data

Still work to be done to reach a LEP combination on the effect $\delta m_w (qqqq) < 10 \text{ MeV}?$

Other BEC models need to be studied

mw: results

Summer 2002 - LEP Preliminary

Summer 2002 - LEP Preliminary

 $M_w[GeV]$ $m_W(qqqq)=(80.449\pm0.107) \text{ GeV}$ $m_w(qqlv)=(80.448\pm0.043) \text{ GeV}$

 $m_w(qqqq)-m_w(qqlv)=(9\pm44)$ MeV

Roberto Chierici

Standard Model Higgs: direct search

Search mainly in ZH→ff bb

Important ingredients of the analyses:

- ➤ High b-tagging efficiency/purity
- Kinematical reconstruction (like W mass)
- ⇒ Good understanding of the detector is essential (tails!)

LEP final combination:

- ➤ Combine 2D distributions (m_H(rec.), discriminant variable)
- ➤ Use likelihood ratio test hypothesis:

$$Q(m_H) = \mathcal{L}(s+b; m_H) / \mathcal{L}(b; m_H)$$

Final states	ppdd	bbvv	bbll	ττqq
BR(%)	60%	19%	6%	8%

Standard Model Higgs: mass distributions

Limits on m_H

Confidence level for background and signal:

1.7 σ excess (8% probability) over the background, concentrated in one channel (qqbb) and one experiment (ALEPH, ~3 σ)

 \Rightarrow Final LEP2 limit: m_H>114.4 GeV @95% CL

Constraints on the Standard Model

Higgs is escaping, but we can constrain it with our precise measures at LEP2 Fundamental parameters of the SM are linked through EW corrections

 $m_H \le 193 \text{ GeV at } 95\% \text{ CL}$

35% shift in m_H for 5 GeV shift in m_t!

direct and indirect data in agreement both favour a light Higgs

Roberto Chierici

Conclusions

The LEP2 era of 4f physics is approaching its end:

- > test of the non-abelian structure of the theory
- ➤ loop sensitivity for differential and total cross-sections
- ➤ improvement of the precision on m_w by ~10

Still to do before leaving final numbers

- \triangleright systematics on m_w (FSI in particular). δ m_w(LEP)<35 MeV ?
- \succ complete few combinations (4f cross-sections, d σ /d ϑ _{w-}, TGC, QGC)
- ⇒ Collaborations are still active!

e+e- confirms its role in precision physics but not in discovery

- ➢ if the Higgs is there, it can't hide forever and will sooner or later become a precision measurement like all other topics of this talk
- > if Higgs is not there, signals of new physics must appear at LHC/LC

LEP has allowed unprecedented tests of the SM, which might start to be under pressure. Let us be patient, but ready for surprises.

In the meanwhile m_t is the key for continuing the hunt...