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1 – Introduction

� Precise measurements have to be matched by pre-

cise theoretical predictions

� Expectations for electroweak measurements in Run II

of the Tevatron:

☞ δMW
� 40 MeV per channel and experiment for

2 fb
� 1

☞ δΓW
� 50 MeV per channel and experiment for

2 fb
� 1 from tail of transverse mass distribution

☞ δsin2 θW
� 6 � 10

� 4 per channel and experi-

ment for 10 fb
� 1

☞ W
�
Z cross section ratio, R , to � 0 � 5% (extract

ΓW )

☞ search for W � and Z �

� use σW as a luminosity monitor

� For these measurements, it is necessary to fully un-

derstand QCD and EWK radiative corrections to W

and Z production
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� QCD corrections: in good shape

☞ O � α2
s � for cross section

☞ resummed W and Z pT distributions are known

� EWK corrections

☞ electroweak corrections shift W and Z masses

by O � 100 MeV)

☞ same for ΓW from tail of transverse mass (MT )

distribution

☞ most of the effect comes from photon radiation

� ( � 1997) (Berends, Kleiss (1985))

☞ only final state corrections taken into account

☞ soft and virtual O � α � corrections are estimated

indirectly from the O � α2 � W � � νγ, Z � ����� � γ
width and the hard photon contribution

☞ CDF’s and DØ’s guess-timate of uncertainty from

unknown EWK corrections in Run I analyses:

δMW
� 20 MeV
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� recent developments:

☞ full O � α � QED corrections to Drell-Yan (Z) pro-

duction (UB, S. Keller, W.K. Sakumoto)

☞ full O � α � electroweak corrections to Drell-Yan

(Z) production (UB, O. Brein, W. Hollik, C. Schap-

pacher, D. Wackeroth)

☞ O � α � electroweak corrections to W production

in the pole approximation (UB, S. Keller,

D. Wackeroth)

� this talk:

☞ outline calculation

☞ summarize recent results on full O � α � electroweak

corrections to W production and its implications

(S. Dittmaier, M. Krämer and UB, D. Wackeroth,

in preparation)
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2 – Outline of Calculation

� use W production as an example
� first step: use pole approximation (UB, S. Keller,

D. Wackeroth)

☞ evaluate form factors which describe radiative
corrections for ŝ � M2

W

☞ ignore contributions which vanish for ŝ � M2
W

� in pole approximation, the EWK corrections can
be arranged in such a way that they correspond to
gauge invariant sets describing initial state, final
state and interference contributions
(Hollik, Wackeroth)

� employ NLO Monte Carlo technique for calcula-
tion (recent review: Harris and Owens)

☞ isolate soft and collinear singularities associated
with real photon emission.
☞ partition phase space into soft, collinear and fi-
nite regions by introducing theoretical cutoffs δs

and δc
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☞ for

Eγ � δs

�
ŝ

2

evaluate 2 � 3 diagrams in soft photon approxi-

mation (
�

ŝ: parton CM energy)

☞ soft singularities from final state radiation (FSR)

cancel against those from interference of Born and

virtual final state corrections

☞ the same applies to initial state radiation (ISR)

and interference effects

☞ for

Eγ � δs

�
ŝ

2

use full 2 � 3 matrix elements. Evaluate via Monte

Carlo.
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� Collinear singularities

☞ Final state collinear singularities are regulated

by finite lepton masses

☞ Initial state collinear singularities are universal

to all orders and are absorbed into the parton dis-

tribution functions (PDF’s), in complete analogy to

QCD

� Evaluate matrix elements for

�
t̂
��� �

û
� � δcŝ

(t̂, û: standard Mandelstam variables) in leading

pole approximation

☞ factorize singularities into PDF’s

☞ Evaluate remainder as part of 2 � 2 contribu-

tion

☞ for

�
t̂
��� �

û
�

� δcŝ

evaluate full 2 � 3 matrix element
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➞ for a consistent treatment of the O � α � initial

state corrections, QED corrections should be in-

corporated into the global fitting of PDF’s.

☞ need QED corrections to PDF’s

☞ QED corrections to PDF’s are small except at

large x (Spiesberger)

� ����� � �	�
�

�

�



� �������
�
� � � �
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[U � ∑gen � u * ū � , D � ∑gen � d * d̄ � ]
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☞ also need QED corrections for all data sets used

to fit PDF’s

☞ Absorbing the collinear singularities into the

PDF’s introduces a QED factorization scheme de-

pendence

☞ we performed our calculation in the QED MS

and QED DIS schemes

☞ current global fits to the PDF’s do not take into

account QED corrections

➞ strictly speaking our calculation is incomplete

☞ fortunately initial state corrections are small

� final result

☞ two sets of weighted events corresponding to

2 � 2 and 2 � 3 contributions

☞ each set depends on δs and δc

☞ their sum must be independent of δs and δc (as

long as these parameters are sufficiently small so

that the soft photon and pole approximations hold)
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� go beyond pole approximation

☞ evaluate form factors for arbitrary ŝ

☞ include leading O � α2 � corrections

☞ include contributions which vanish at W pole

(example: W Z box diagrams)
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� matrix elements and cross sections for the full O � α �
corrections to W production were published recently

by Dittmaier and Krämer, PRD65, 073007 (April

2002).

☞ DK vs BW comparison for Tevatron:
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excellent agreement
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� Drell-Yan production:

☞ use same phase space slicing method and treat

collinear singularities as in W case

☞ perform calculation in ’t Hooft-Feynman gauge

☞ use dimensional regularization

☞ and the ON-SHELL renormalization scheme

Ulrich Baur RADCOR 2002 09/11/02



3 – Phenomenological Consequences
� photonic effects:

☞ use Drell-Yan production as example
☞ for simplicity, only take QED corrections into
account for the moment
☞ FSR terms dominate: they are proportional to

α
π

log
ŝ

m2�

➞ these terms significantly influence the � ��� �

invariant mass distribution
☞ Tevatron:
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� integrating over m � � � � , the large positive and neg-

ative corrections cancel (KLN theorem)

� Detector effects may significantly influence the QED

corrections:

☞ It is difficult to discriminate electrons and pho-

tons which hit the same calorimeter cell

➞ recombine e and γ momenta to an effective elec-

tron momentum in that case

➞ an inclusive quantity is formed

➞ the mass singular terms ( � α �
π � log � ŝ �

m2� � ) dis-

appear (KLN again � � � )

➞ the effect of the QED corrections is reduced
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☞ Muons must be consistent with a minimum ion-

izing particle

➞ require Eγ � 2 GeV in cell traversed by muon

➞ this reduces the hard photon part

➞ the mass singular terms survive
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� non-photonic effects: use corrections ignored in

pole approximation of W production as an exam-

ple:

☞ change W cross section by � 0 � 1%

☞ become large and negative in high MT tail

➞ may have significant impact on ΓW measured

from tail of MT distribution

� O � α3 � MT distribution normalized to MT distri-

bution in enhanced Born approximation (EBA) at

Tevatron and LHC

☞ slight bump in µ case at the Tevatron is due to

W Z box threshold effects
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� reason: terms � α log2 � ŝ �
M2

W � from vertex and

box corrections

☞ need to resum?

☞ certainly for the LHC this is necessary

� the large invariant mass region is interesting to probe

for deviations from the SM (large extra dimensions,

compositeness, etc.)

� impact on W width measurement

☞ recall form of Breit-Wigner:

1�
ŝ � M2

W � 2 � Γ2
W ŝ2 � M2

W

☞ sensitivity to ΓW comes from region where
�

ŝ �
MW � ΓW

☞ cross section at peak scales like 1
�
Γ2

W but this

is washed out by detector resolution effects

☞ σW scales like 1
�
ΓW
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☞ ratio ���
dσ � dMT � � σW � ΓW

���
dσ � dMT � � σW � ΓSM

W

� ΓW

ΓSM
W

at high values of MT

� now suppose one compares data with pole approx-

imation

☞ compare shapes of MT distributions by using

normalized distributions

☞ for input parameters chosen, ΓSM
W � 2 � 072 GeV

☞ size of corrections ignored in pole approxima-

tion is of the same order as effects caused by non-

SM values of ΓW in the range accessible in Run II

� ignoring these corrections shifts ΓW by about � 0 � 5%

( � 10 MeV)

☞ this is not negligible compared with the expected

precision in Run II (40 MeV/channel/exp.)
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4 – Conclusions

� Calculations of the full O � α � corrections to Z and

W production now exist

� These calculations are essential ingredients for

Run II and LHC precision electroweak measure-

ments

� the electroweak corrections become large at high

energies

� in the W case they will play a role in the determina-

tion of the W width from the tail of the transverse

mass distribution
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