
The QPACE Project

T. Streuer

DESY

Technical Seminar 29.4.2008



Outline



QCD

Quantum Chromodynamics:
Theory describing strong interactions between quarks and gluons
SU(3) gauge theory
Characteristic properties:

◮ Weak coupling at high energies
→ Perturbation theory applicable

◮ Strong coupling at low energies
→ Perturbation theory breaks down



Lattice QCD

Lattice QCD:
Only known first-principles method to compute low-energy QCD
quantities

◮ Start from (Euclidean) functional integral formulation of QCD

◮ Replace continous 4d space-time by discrete lattice with

- Finite lattice spacing a

- Finite volume V

⇒ Finite number of lattice sites n = (V /a4)
⇒ Functional integrals become ordinary finite-dimensional
integrals

Typical values:
a ≈ 0.08fm,V ≈ (3fm)4

⇒ n = O(106)



Lattice QCD

Fundamental calculations: integrals of the type

∫
DU G (U)...G (U) det D

D: Lattice Dirac operator
G: Quark propagator
Integrate over all links in lattice
Only feasible method: Monte Carlo-integration



Lattice QCD

Well suited for parallelisation:

◮ Natural partitioning (domain decomposition)

◮ Only finite-range communication necessary
Nearest neighbour comm. sufficient in many cases

◮ Computational kernels relatively simple

But: we need

◮ High bandwidth

◮ Low Latency



Lattice QCD machines

APE machines
“Array Processor Experiment”
Developed in Italy/Germany/France
APE(1989), APE100(1994), APEmille(2000), apeNEXT(2005)
apeNEXT:

◮ Custom VLIW processor

◮ 3d Torus Network

Installations: Bielefeld, Rome, Zeuthen



Lattice QCD machines

QCDOC
“QCD On a Chip”
Developed by US lattice community (+UKQCD) together with
IBM

◮ Standard IBM PowerPC 440 CPU

◮ 6d Torus Network

Installations: Brookhaven, Edinburgh



Lattice QCD machines

Other approaches:

◮ PC Clusters
(e.g. Tsukuba, JLAB, Wuppertal)

- Moderate price/performance
- Moderate scaling
- Easy to program

◮ Graphic Cards
Wuppertal, Budapest (Z.Fodor)

- Superior price/performance
- Hard to program
- Only single-processor systems



QPACE

Qcd PArallel computing on CEll
QPACE collaboration:

◮ Academic partners:

U Regensburg
U Ferrara
U Milano
FZ Jülich
U Wuppertal
DESY Zeuthen

◮ Industrial partner:

IBM Böblingen



QPACE Collaboration

Academic partners:

◮ U Regensburg
S. Heybrock
D. Hierl
T. Maurer
N. Meyer
A. Schäfer
S. Solbrig
T. Wettig

◮ U Ferrara
M. Pivanti
F. Schifano
L. Tripiccione

◮ U Milano
A. Nobile
H. Simma

◮ FZ Jülich
M. Drochner
N. Eicker
T. Lippert

◮ DESY Zeuthen
D. Pleiter
T. Streuer
K. Sulanke
F. Winter

◮ U Wuppertal
Z. Fodor



QPACE

Design Goals:
Build a lattice QCD machine with

◮ Scalable network:

- Low latency: < 1µs

- Bandwidth: 1GB/s bidirectional

◮ Low power consumption



CPU: Cell Broadband Engine

◮ Developed by Sony, Toshiba, IBM (“STI”) since 2001

◮ Basic idea:
One general-purpose core
Multiple specialized coprocessor cores

◮ Implementation:
First version 2006
“Enhanced Cell” 2008

◮ Applications:
Playstation 3 (2006)
IBM QS20 blades (2006)
IBM Roadrunner (2008?)
IBM QS22 blades (2008)



Cell Overview

◮ Power Processor Unit

◮ 8 Synergistic Processor Units

◮ Element Interconnect Bus

◮ IO InterFace

◮ Memory InterFace

MIF

IOIF

PPU

SPU SPU 

SPU SPU 

SPU SPU 

SPU SPU 



Cell - PPU

PPU : Power Processor Unit
64-bit PowerPC compatible core

◮ Two hardware threads
(separate register sets, shared execution units)

◮ AltiVec SIMD extensions (single precision)

◮ 2-Levels cache hierarchy (64 kB L1, 512kB L2)



Cell - SPU

SPU: Synergistic Processor Unit

◮ Computing coprocessor

◮ RISC instruction set (different from PowerPC)

◮ 256kb local store (data+code)

◮ No RAM access, no cache

◮ SIMD instructions, operating on 128bit registers

◮ DMA engine for data transfer LS ↔ RAM

◮ Peak performance:
12.8 GFlop/s (double precision) at 3.2 GHz



Cell - EIB

Element interconnect bus:

◮ Internal bus connecting PPU, SPUs,
IOIF, MIF

◮ Bi-directional Ring structure

◮ Total Bandwidth 200 GB/s

◮ Transfer Granularity: 128 Bytes
(=1 PPU Cache line)

MIF

IOIF

PPU

SPU SPU 

SPU SPU 

SPU SPU 

SPU SPU 



External interfaces

◮ RAM interface
Interface to DDR2 RAM

◮ I/O interface
RAMBUS “FlexIO”
Max. bandwidth 25 GB/s inbound, 35 GB/s outbound
Can be used to

- Connect 2 Cells directly
- Attach external device



Cell

Programming model:

◮ PPU: Linux kernel
Management of SPUs via library calls

◮ SPU: no operating system
Code execution controled by PPU
OS services (I/O, paging, ...) provided by PPU

◮ Communication between PPU/SPUs:

- DMA transfers
- “Mailboxes”
- Interrupts



Cell and Lattice QCD

Suitable for lattice QCD?

Programming model:

◮ PPU used for program control

◮ SPUs used for computation

Simple performance model:

◮ All tasks run at maximum throughput

◮ All latencies can be hidden

Maximum performance for Dirac operator:
34% of peak for reasonably-sized system

Limiting factor: RAM bandwidth



QPACE

Machine overview

◮ O(2048) compute nodes
Cell CPU
4GB RAM
Custum Network Processor

◮ Custom 3d torus network
1GB/s bandwidth



QPACE Rack

◮ 8 Backplanes in a rack

◮ 32 nodecards attached to
each backplane

→ 256 nodes/rack
≈ 25 TFlop/s
(peak, double precision)

(Side view)



QPACE Backplane

Each backplanes contains connectors for

◮ 32 Nodecards

◮ 2 Rootcards

Links in z-direction (“red”) on backplane
Connectors for Links in x,y-directions (“blue”, “green”)



QPACE Nodecard

Ethernet

Torus x+

Torus x−

Torus y+

Torus y−

Torus z+

Torus z−

Network

Processor

CPU

(Cell)

4GB

RAM

◮ CPU: Cell BE

◮ 4GB Ram

◮ Custom Network Processor

◮ 6 Torus links

◮ Ethernet link



Network Processor

NWP implemented in FPGA (“Field Programmable Gate Array”)

“gate array” = array of logic gates
“field programmable” : function of gates, connections between
gates configurable (read from flash memory at power-on)

Large array of logic gates which can be re-programmed
Comparison to ASIC:

◮ (much) smaller NRE costs

◮ configurable

◮ higher per-unit costs

◮ lower performance



FPGA

Basic building blocks:

look-up table

?

flip-flop

some other components:

◮ RAM, FIFO logic

◮ Fixed-point arithmetic units

◮ Clocking resources (PLLs, ...)

◮ I/O buffers



NWP

FPGA: Xilinx Virtex5-110LXT

◮ 550 MHz clock rates (in theory), for our design ≈ 300 Mhz

◮ 16 High-speed (3GHz) transceivers (“Rocket I/O”)

◮ 666 kB RAM

◮ 69120 LUTs, flip-flops

◮ 680 I/O Pins



Network

3d Torus

◮ “Red” links within backplane
Max. Size 8

◮ “Green” links within half-rack
Max. Size 16

◮ “Blue” links across racks
Max. Size 2nrack

Switches on nodecard enable torus reconfiguration



Network configuration

“Red” links: within backplane
Two possible configurations:



Network configuration
“Green” links: within (half-)rack
Three possible configurations:



Network Protocol

Low-level protocol: XAUI (10GbE)

◮ 4 bi-directional lanes at 2.5 GHz

◮ Differential signaling

◮ No separate clock transmitted

◮ 8b/10b encoding:
10 bits transmitted for each data byte
eases clock recovery
some level of error protection

→ 10 GBit/sec “raw” data, 1 GByte/sec usable data



Network Protocol

High-level protocol: custom protocol

◮ Only nearest neighbour communication

◮ Four virtual channels per link

◮ Packet order preserved within channel

◮ Data packets:

- 128 Bytes payload
- Header (Target address, channel)
- CRC checksum



Network

PHY

PHY

PHY

PHY

PHY

PHY

250 MHz 2.5 GHz

3 GHz
NWP

Network processor:

◮ routing between Cell and torus links

◮ data buffering

GBe PHYs:

◮ serializing/deserializing

◮ 8b/10b encoding

◮ switches to reconfigure topology



Link Testbed

NWP PHY PHY NWP

Testbed for torus link:
Two testboards with NWP and one PCIe PHY

◮ 1 GB/s data rate

◮ 50cm/3m infiniband cable

◮ > 24h without bit error (O(100TB))

But:
have to replace PHY because of area, power consumption
⇒ will repeat test with different PHY



Link Testbed



Rootcard

1 Rootcard per 16 Nodecards

◮ Controls power-on

◮ Switch for control/monitoring signals

◮ Clock generation/distribution:

- Each rootcard contains clock generator (25 MHz)
- Only one is active
- All nodes run on same frequency
- Input clocks for Cell, NWP, ... derived from global clock on

nodecard

◮ Collects/distributes global signals



Global Signal Tree

◮ Tree network

◮ Two bits per direction (up/down)

◮ Independent of torus network

◮ Functions:

- Node synchronization
- “Kill” on fatal error
- Evaluate global conditions



Communication model

User’s view of network:

◮ Simple communication library (no MPI)

◮ Expected usage:
SPMD (single program, multiple data)
Matching send, receive commands



Project status

◮ Nodecard/Rootcard schematics: April 2008

◮ Nodecard Power-on: May 2008

◮ Bring-up prototype (nodecard, rootcard, backplane):
July 2008

◮ Small test system (32 nodes): End 2008

◮ Large System (2x1024 nodes): Spring 2009


	Lattice QCD
	Cell Processor
	QPACE Architecture
	Project Status

