
E�cient linear algebra related to lattice QCD

on Cell Broadband Engines

Martin Wolf
Ruprecht-Karls-University Heidelberg

mail@martin-wolf.org

Aim of the project was to investigate several possible implementations of a SU(3)
matrix on the Cell Broadband Engine (CBE) processor according to their e�ciency.
The motivation for such an investigation comes from lattice QCD, where e�cient lin-
ear algebra with SU(3) matrices is fundamental to be able to handle the huge amount
of calculations in a �nite time. With faster algebra software libraries on parallel su-
percomputers it could be possible to increase the used lattice volume and to decrease
the lattice spacing a to obtain more precise results for quark-gluon and gluon-gluon
interactions. The C++ software library, I wrote, contains two possible implementa-
tions for a SU(3) matrix. It hides the complexity of the processor architecture. So
programmers are able to write lattice QCD applications more easily and independent
from the used architecture. The library's e�ciency was investigated by myself with
benchmark tests which have been executed on a QSZO blade with two Cell Broadband
Engine processors each located at the research center in Jülich, Germany.

Contents

1 Introduction 2

1.1 Motivation - Why e�cient linear algebra? . 2
1.2 Setup � The used development environment . 2
1.3 Overview of the Cell Broadband Engine Processor 2
1.4 SIMD on the SPEs . 3
1.5 Time measurement on the SPEs . 3

2 The newly written Cell C++ library 3

2.1 The spu_decrementer class . 3
2.2 The spu_mem class . 4
2.3 The VComplex2 class . 4
2.4 The VComplex4 class . 4
2.5 The SU(3) matrix classes . 4

2.5.1 The SU3_VC2 matrix class . 4
2.5.2 The SU3_VC4 matrix class . 5

3 Benchmark tests on the SPE 5

3.1 Fundamental programming language benchmarking 5
3.2 SU(3) matrix multiplication benchmarking . 6

4 Conclusion 7

5 Acknowledgments 7

References 7

1

1 Introduction

1 Introduction

At �rst a small motivation is given why e�cient
linear algebra is needed from the physics point
of view. Than an explanation of the used devel-
opment environment and an overview of the Cell
Broadband Engine follows, as well as an intro-
duction on how to measure time on a Cell pro-
cessor. The document will continue then with
the description and usage of the newly written
C++ library for the CBE and �nally the bench-
mark results are presented and discussed.

1.1 Motivation - Why e�cient linear
algebra?

The �nal aim is to simulate elementary particles
interacting to each other by the strong force.
Strong interacting particles can be described
by quantum chromodynamics (QCD) what is a
gauge theory based on the non-abelian SU(3)-
colour group. To simulate this theory on the
computer one has to discretize the space-time
onto a lattice of size V and a lattice spacing a.
The quark �elds are than only de�ned at the
nodes of the lattice. Instead of a vector poten-
tial as in the continuum case, the gauge �elds
variables are de�ned on the links of the lattice
and correspond to the parallel transport along
the edge which takes on values in the Lie group.
Hence to simulate QCD, for which the Lie group
is SU(3), there is a 3 by 3 special unitary matrix
de�ned on each link. The faces of the lattice are
called plaquettes. To calculate a quantity (such
as the mass of a particle) in lattice gauge theory,
it should be calculated for every possible value
of the gauge �eld on each link, and then aver-
aged. In practice this is impossible. That's why
the Monte Carlo method is used to estimate the
quantity. An importance sampling is done and
these chosen con�gurations (values of the gauge
�elds) are generated with probabilities propor-
tional to e−βS , where S is the lattice action for
that con�guration and β is related to the lattice
spacing a. Observables of interest are calculated

on each con�guration. Estimates for these ob-
servables are then found by taking the average
from a large number of con�gurations. To �nd
the value of an observable in the continuum this
procedure has to be repeated for various values
of a and then an extrapolation to a = 0 has
to be performed. All algorithms for simulating
QCD on a lattice involve a fair amount of linear
algebra operations. For this exploratory study
we restricted ourselves on operations with SU(3)
matrices. Our approach can, however, easily
be applied to linear algebra operations involv-
ing other types of complex objects. For further
reading on lattice QCD I refer to a book from
Heinz J. Rothe [Rot97].

1.2 Setup � The used development
environment

The here described software, the C++ library
and the benchmark tests, have been compiled
using the IBM Software Development Kit (SDK)
version 2.0. This software kit contains the es-
sential tools required for developing programmes
for the Cell Broadband Engine. I used the GNU
C++ compiler "gcc" version 4.1.1, the IBM Full
System Simulator for the Cell Broadband En-
gine (systemsim) and a static timing analysis
timing tool, spu_timing, that instruments as-
sembly source with expected instruction timing
details.

1.3 Overview of the Cell Broadband
Engine Processor

A detailed description of the CBE Processor is
given in the IBM documentation [IBM06]. Here
I will just give a brief general introduction on
the processor architecture. Figure 1 shows an
overview of the processor. The CBE consists of
one main multi-threaded processor called Power
Processor Element (PPE) where the operating
system is running on as well as the applica-
tion programme. Furthermore there are eight
sub-processors called Synergistic Processor Ele-
ments (SPEs) which are actually the workhorses

2

2 The newly written Cell C++ library

doing the calculations in threads of the task.
All nine processors are connected to each other
by the Element Interconnect Bus (EIB) provid-
ing the communication between the processors.
The PPE and all SPEs share the same memory
through the Memory Interface Controller which
is also attached to the EIB. But the PPE and
the SPEs have di�erent memory access proce-
dures. The PPE fetches data through a cache
from the main memory and stores it into its pro-
cessor registers. The SPEs load data with asyn-
chronous Direct Memory Access (DMA) trans-
fers from the main memory and store it into
their 256KByte Local Store (LS). From there the
SPE loads the data into its large 128 x 128Bit
register �le. With this three level memory ar-
chitecture the SPEs are independent from the
PPE and intensive calculations won't be inter-
rupted by DMA transfers. The CBE can reach a
maximal peak performance of 8 Flops · 8 SPEs ·
3.2 GHz = 204.8 GFlops/s. Because of this
high peak performance CBE processors could
be good candidates for supercomputing archi-
tectures in the future. You can �nd CBE pro-
cessors as well in your everyday life, e.g. in the
gaming console Sony PlayStation III.

1.4 SIMD on the SPEs

SIMD stands for Single Instruction Multiple
Data and is a very important technique for par-
allelizing calculations on a computer. The main
goal is to have one instruction and execute this
once on multiple data simultaneously. For this
behavior the data has to be arranged in vec-
tor data types. Figure 2 shows a typical SIMD
add operation. The SPE has four �oating point
number pipelines, e.g. four add operations can
be executed simultaneously.

Another great property of the SPE is that it
has two instruction pipelines: the even (0) and
the odd (1) pipeline. Each instruction belongs
to one of these two pipelines which are con-
nected to the several execution units, e.g. the
FPU. This means an instruction is either an
even instruction or an odd instruction. The SPE

fetches its instructions pairwise in a so called
fetch group and if the �rst instruction in the
fetch group is an even instruction and the sec-
ond one an odd instruction then the SPE can
issue both instructions at once, e.g. the SPE
can handle, execute and complete up to two in-
structions per cycle. But for dual-issue behavior
the instructions must appear in the appropriate
order and an even instruction must be followed
by an odd instruction.

1.5 Time measurement on the SPEs

Always important in my project was the ques-
tion: "How fast are several parts of the library?"
To answer this question the time needed to exe-
cute a certain part of the programme had to be
measured. But how can one measure the execu-
tion time of a calculation? Each SPE provides
a so called decrementer register. This register
is a 32Bit integer which decrements on a con-
stant rate based on the SPE clock frequency.
Setting this number to a high value and reading
it two times � once when the calculation starts
and once when it �nished � you get a value in-
dicating the elapsed time.

2 The newly written Cell C++

library

The C++ library I wrote consists of sev-
eral C++ classes. General classes are
spu_decrementer and spu_mem described in
the following sections. Classes for data types
like complex numbers or SU(3) matrices are
VComplex2, VComplex4, SU3_VC2 and SU3_VC4

also described here later on.

2.1 The spu_decrementer class

This class o�ers the general functionality of
SPE time measurements by using the SPE's
decrementer register. One can start a time
measurement by creating an object instance of

3

2 The newly written Cell C++ library

this class and calling the (inline) class method
start(). After �nishing some calculations one
can stop the time measurement by calling the
class method stop(). The start method sets
the decrementer register to a high value. Both
methods, start and stop, return the current
decrementer value. After executing the stop()

method the static object member counts holds
the elapsed decrementer count ticks. This vari-
able is not reset by the start method. So one
can interrupt time measurements by calling the
stop method and can continue them by call-
ing the start method a second time. To reset
the counter variable one has to call the reset

method.

2.2 The spu_mem class

The spu_mem class consists of several static
member methods for checking SPU memory /
DMA conditions. For example the so called
context, a memory block transferred from the
PPE to the SPE, must be a multiple of 16 bytes
and less than 16 kbytes. The static method
check_dma checks those requirements.

2.3 The VComplex2 class

Essential for lattice QCD calculations are com-
plex numbers. The fact that the SPE arranges
its data into vectors with four single preci-
sion �oating point numbers (SIMD technique),
has the consequence that storing single complex
numbers in each data vector is simply not ef-
�cient because one would waste half the mem-
ory. Only the storage of a multiple of two com-
plex numbers would be memory e�cient. The
VComplex2 class provides a vector of two com-
plex numbers generated by four single precision
�oating point numbers (vector float). Arith-
metic complex operations like addition, subtrac-
tion, multiplication, complex conjugation and
calculating the norm of a complex number have
been implemented.

2.4 The VComplex4 class

Very similar to the VComplex2 class is the
VComplex4 class. It provides a data type for
complex numbers as well, but with the di�erence
of holding four instead of only two complex num-
bers. It is implemented with two four-�oating-
point-number vectors. The �rst one holds the
real parts and the second one holds the imag-
inary parts of all four complex numbers. This
arrangement of the data has the advantage that
no shu�e operations are required when multi-
plying two VComplex4 objects.

2.5 The SU(3) matrix classes

Common objects in QCD are SU(3) matrices.
Therefore, a SU(3) matrix data type has to be
supported by the library. There are two pos-
sibilities to implement such a data type either
with the VComplex2 or with the VComplex4 class.
I implemented both. Each one has advantages
and disadvantages as well. Common operations
with a SU(3) matrix are the multiplication with
an other SU(3) matrix and the multiplication
with its adjoint (transposed and complex conju-
gated) matrix: A ·A, A ·A†. Therefore these op-
erations have to be optimized. The table shows
the required operation counts for multiplications
of each implementation. With dual-issues the
SPE should be able to handle an even and an
odd instruction simultaneously. The maximum
number of even or odd instructions, max(even,
odd), therefore gives us a lower bound for the
number of cycles needed to execute this partic-
ular operation.

2.5.1 The SU3_VC2 matrix class

The �rst implementation of a SU(3) matrix class
was done by combining �ve VComplex2 class ob-
jects to one matrix object class called SU3_VC2.
The advantage using the VComplex2 class is that
one wastes only two �oating point numbers /
one complex number (2 · 32Bits = 64Bits) of
memory per matrix because you have ten � �ve

4

3 Benchmark tests on the SPE

times two � complex numbers per matrix and a
SU(3) matrix only consists of nine complex num-
bers. On the other hand the VComplex2 multi-
plication operations need a lot of shu�e opera-
tions which is a real disadvantage. To multiply
two SU3_VC2 matrices one needs at least 89 op-
erations and at least 48 clock cycles.

2.5.2 The SU3_VC4 matrix class

The SU3_VC4 matrix class is the second imple-
mentation of a SU(3) matrix which uses three
VComplex4 objects for holding all nine complex
numbers. But with this storage kind one loses
25% of memory per matrix (six �oating point
numbers / three complex numbers (6 · 32Bits =
192Bits)). This means that on the one hand we
have to execute less operations on the SPE, but
we will spend more time on loading the data.
To multiply two SU3_VC4 matrices one needs
at least 78 operations and at least 48 clock cy-
cles.

3 Benchmark tests on the SPE

Benchmarking is an important topic for numer-
ical calculations. The aim is always to minimize
the execution time of a speci�c calculation pro-
gramme. When a programmer uses a software li-
brary he expects that the used library is already
optimized. That's why I had to benchmark the
library routines. In the following sections I will
describe my benchmark tests.

3.1 Fundamental programming
language benchmarking

For programmers writing supercomputing appli-
cations it is essential to know how much execu-
tion time fundamental language constructs e.g.
conditions or loops will require or in colloquial
words: How much they will cost. The prob-
lem is that every condition or loop results in

one or more branches within the processor's in-
struction queue and every branch may be really
expensive and you can lose much time and ef-
�ciency just for jumping within the processor's
instruction queue when you write source code
with many conditions and loops. To predict the
entire execution time of your program you need
to know this so called branching overhead. For
this reason I tried to estimate the time for a
single branch of a loop. Listing 1 shows the as-
sembler code of a single empty loop with register
$2 as the loop variable.

Listing 1: Assembler code for an empty loop
1 hbra . L32 , . L16
2 . L16 :
3 a i $2 , $2 ,−1
4 . L32 :
5 brnz $2 , . L16

To estimate the time one loop branch needs I put
several no-operation commands (NOPs) into the
loop and measured the time by using the decre-
menter. Figure 3 shows the results. The reason
of having measured a step function here is that
the SPE fetches instructions pairwise and the
last NOP is dual-issued with the branch com-
mand when there is an even number of NOPs
inside the loop. We �t our data using the χ2

method to the ansatz

tdecr =
Nloop [α0 + α1 (NNOP −mod(NNOP − 1, 2))]

(1)
where α0 is the required decrementer count for
one loop branch and α1 is the required decre-
menter count for one NOP instruction. The
measurements were done for Nloop = 106..107

in steps of 106 and NNOP = 1..12 in steps of 1
on a single SPE. The �t returned the following
results:

χ2 = 10.4485
ndof = 119

α0 = 0.00894925(3)
α1 = 0.004474600(43)

From α2 one could get the cycles/decrementer
ratio:

1 dcount =
1
α1

cycles = 223.5 cycles

5

3 Benchmark tests on the SPE

This means for α0, the required time for one
loop, in units of cycles:

α0 = tloop = 2 cycles.

But keep in mind that those two-cycles-branches
can only be performed if the processor got a cor-
rect branch hint before the branch is executed.
Such a branch hint is shown in listing 1 in line
1.

3.2 SU(3) matrix multiplication
benchmarking

As I mentioned above I implemented two SU(3)
matrices SU3_VC2 and SU3_VC4. In the bench-
mark test I multiplied two arrays of SU(3) ma-
trices with a length of 50 to 800 matrices and
measured the required time for this operation:

uab
i ←

∑
c

vac
i wcb

i . (2)

The arrays were stored in the SPE's local store
(LS). The listing 2 shows the code.

Listing 2: C++ loop with SU(3) matrix array
multiplication (not unrolled)

1 SU3 ∗ar_su3_a , ∗ar_su3_b ;
2 ar_su3_a = new SU3 [N] ;
3 ar_su3_b = new SU3 [N] ;
4
5 for (i =0; i<N; i+=1)
6 {
7 ar_su3_a [i] ∗= ar_su3_b [i] ;
8 }

The results of all SU(3) benchmark tests are
shown in �gure 4. The red and green points are
the results for the loop shown in listing 2. The
red benchmark is the result for non-Dual-Issue
behavior and the green one shows the result for
Dual-Issue behavior1. The improvement of the
execution time with dual-issued code is obvious.
Now one can improve the execution time even
more. This can be done with so called loop un-
rolling. This means that instead of only one

multiplication two, three, four, etc. multiplica-
tions are done within one loop iteration. This
has the e�ect that less loop branches occur and
the compiler could be able to interleave the in-
structions of all multiplications in a way that de-
pendencies between instructions (e.g. an imme-
diate store after a load of a register) are removed
and the instruction density increases. The dis-
advantage of this method is a longer programme
code and one has to consider that the whole
programme has to be transferred from the main
memory to the local store (LS) of the SPE. One
has to �nd an optimal trade-o� between gaining
by loop unrolling and losing by loading a larger
number of instructions. An unrolled loop with
an unrolling factor of 3 is shown in listing 3.

Listing 3: C++ loop: SU(3) matrix array mul-
tiplication (unrolled by 3)

1 SU3 ∗ar_su3_a , ∗ar_su3_b ;
2 ar_su3_a = new SU3 [N] ;
3 ar_su3_b = new SU3 [N] ;
4
5 for (i =0; i<N; i+=3)
6 {
7 ar_su3_a [i +0] ∗= ar_su3_b [i +0] ;
8 ar_su3_a [i +1] ∗= ar_su3_b [i +1] ;
9 ar_su3_a [i +2] ∗= ar_su3_b [i +2] ;
10 }

The �gure 4 shows benchmark tests for several
unrolling factors. A signi�cant improvement is
obvious until an unrolling factor of 3. From
there on the instruction density is almost con-
stant and no more instruction dependencies can
be resolved. Surprisingly, the benchmark tests
tell us that the SU(3) matrix implemented by
the VComplex2 class is two times faster than
the one implemented by the VComplex4 class.
What is the reason for that? A look into the
timed assembler code (see listing 4), which was
generated by the spu_timing tool, shows the
problem: many dependency stalls indicated by
many dashes! Unfortunately, the compiler is not
able to recognize these dependencies and to re-
order the code. The compiler could interleave
two multiplications to minimize the dependency
stalls but in listing 4 one can see that it does

1For unknown reasons the GNU C++ compiler generates ine�cient code. After compilation the even and odd
instructions are always in the wrong order. To cure this ine�ciency one can insert a NOP instruction to obtain
the good order of the instructions.

6

4 Conclusion

not do so. The two multiplications remain to-
tally separated.

Listing 4: Assembler code fragment for a
SU3_VC4 multiplication

1 (1 s t mu l t i p l i c a t i o n)
2 1 567890 lqd $3 , 1 6 ($80)
3 1 678901 lqd $4 , 0 ($80)
4 1 789012 lqd $7 , 3 2 ($80)
5 0 −−−123456 fa $3 , $3 , $28
6 0 234567 fa $4 , $4 , $24
7 0 −−−−789012 fa $3 , $3 , $29
8 0d 890123 fa $4 , $4 , $26
9 1d −−−−−345678 stqd $3 , 1 6 ($80)
10
11 . . .
12
13 (2nd mu l t i p l i c a t i o n)
14 1D 567890 lqd $3 , 1 6 ($19)
15 1 678901 lqd $4 , 9 6 ($80)
16 1 789012 lqd $7 , 128 ($80)
17 0 −−−123456 fa $3 , $3 , $28
18 0 234567 fa $4 , $4 , $21
19 0 −−−−789012 fa $3 , $3 , $29
20 0 890123 fa $4 , $4 , $27
21 1 −−−−345678 stqd $3 , 1 6 ($19)

4 Conclusion

The newly written C++ library provides SU(3)
matrix support with two kinds of implementa-
tion on a Cell Broadband Engine architecture.
The SU(3) benchmark tests show that the im-
plementation with the VComplex2 class is more
e�cient than the one with VComplex4. But this
behavior can be explained by the ine�cient code
which is generated by the GNU C++ compiler.
It seems that the compiler is not able to rear-
range the instructions in such a way that de-

pendency stalls are eliminated. Would it be
able to do so then VComplex4 SU(3) implemen-
tation should be faster or at least as fast as the
VComplex2 implementation.

Another benchmark allowed to investigate the
execution time of a single loop branch. From
my result I conclude that a loop branch costs
only 2 cycles in case the branch is predicted cor-
rectly.

The developed C++ library can be used and
should be extended by Cell programmers in the
future to create a base software library for lattice
QCD simulations on the Cell Broadband Engine
processors.

5 Acknowledgments

I want to thank the whole APE group for their
inexhaustible support and kindness: Dirk, Hani,
Hubert, Nils and Christian. It was a real plea-
sure to work with them together and I had a
great time. I would like especially to thank Dirk
for his proli�c ideas, remarks and concrete aid
helping me to understand the functionality of
the Cell processor and its benchmarking prop-
erly. Also, I would like to thank Karlheinz Hiller
and Sabine Baer for making possible this beau-
tiful experience as summer student in Zeuthen
with the very exciting trip to DESY Hamburg.

References

[IBM06] IBM. Cell broadband engine online documentation.
http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine,
2006.

[Rot97] Heinz J. Rothe. Lattice Gauge Theories, An Introduction. World Scienti�c Publishing
Co. Pte. Ltd., P O Box 128, Farrer Road. Singapore 912805, 1997.

7

References

Table 1: Required operation counts for several multiplication operations on the SPE
instruction VComplex2 VComplex4 SU3_VC2 SU3_VC4

�oat add 0 0 12 12
�oat multiply 2 2 18 18
�oat multiply add 1 1 9 9
�oat multiply sub 1 1 9 9

even instructions 4 4 48 48

shu�e 3 0 31 18
�oat load 1 2 5 6
�oat store 1 2 5 6

odd instructions 5 4 41 30

max(even, odd) 5 4 48 48
sum 9 8 89 78

Figure 1: Overview of the Cell Broadband Engine Processor architecture

8

References

Figure 2: SIMD: Four concurrent add operations

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12

de
cr

em
en

te
r

co
un

ts
 p

er
 lo

op
 it

er
at

io
n

number of loop NOPs

N_loop = 5 * 10^6

y = 0.00894925 + 0.00447460 (int(x) - (int(x)-1) % 2)

loop NOP benchmark test
 measurement

chi^2 fit

Figure 3: Loop benchmark test with NOPs

9

References

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0 200 400 600 800 1000

de
cr

em
en

te
r

co
un

ts
 p

er
 m

at
rix

 m
ul

tip
lic

at
io

n

number of matrix multiplications

SU(3) with VComplex2

SU(3) * SU(3) benchmark
SI no unrolling
DI no unrolling
DI unrolling 2
DI unrolling 3
DI unrolling 4
DI unrolling 5
DI unrolling 6
DI unrolling 7

(a) VComplex2 implementation

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0 100 200 300 400 500 600 700 800

de
cr

em
en

te
r

co
un

ts
 p

er
 m

at
rix

 m
ul

tip
lic

at
io

n

number of matrix multiplications

SU(3) with VComplex4

SU(3) * SU(3) benchmark
SI no unrolling
DI no unrolling
DI unrolling 2
DI unrolling 3
DI unrolling 4
DI unrolling 5
DI unrolling 6
DI unrolling 7

(b) VComplex4 implementation

Figure 4: SU(3)·SU(3) benchmark test with the VComplex2 and VComplex4 implementation

10

