Ideas on multi-messenger approaches with AMANDA / IceCube and AMANDA results

lceCube
http://icecube.wisc.edu

Contents

Part 1: Introduction

- The neutrino detection principles with AMANDA / IceCube
- Status of the AMANDA and the IceCube experiments
- Results of the search for point sources of neutrinos with AMANDA

Part 2: Towards Target of Opportunity measurements based on IceCube observations

- The multi-messenger approach including neutrinos
 - A scheme for a neutrino-based alert trigger
 - The AMANDA on-line event reconstruction and selection Guidelines for a feasibility study of Target of Opportunity programs including AMANDA / IceCube

10/11/2005

E. Bernardini -- Multi-messenger Workshop -- DESY

The neutrino detection principles with AMANDA

Depth

Muons:

Reconstructed from the arrival time of the Cherenkov photons emitted in ice Optimized energy range: TeV to PeV Angular resolution: 2° to 2.5° Energy resolution 0.4 in the log

2000 m

E. Bernardini -- Multi-messenger Workshop -- DESY

The IceCube experiment

Surface detector: IceTop

- 80 stations air shower array
- 2 tanks per station (2 DOMs each)
- E_{threshold} ~ 300 TeV for <u>></u> 4 stations in coincidence
- Cosmic rays composition
- Cross-calibration, veto

Deep ice detector: IceCube

- 80 strings / 60 DOM's each
- 17 m spacing

The design:

- 125 m strings spacing
- hexagonal pattern over 1 km²x1 km
- Digital readout technology (DOMs)
- Construction started in January 2005 with the first string deployed

Status of the IceCube experiment

AMANDA: Data available since 1997 Data taking will continue at least during the first years of IceCube deployment

IceCube:

Deployment of 70+ strings (expected 2010) 2006: 10 strings, for AMANDA equivalent sensitivity scale

AMANDA results in the search for point sources of neutrinos in the data collected between 2000 and 2003

- Search for excesses of events (from specific directions) compared to the background:
 - A diffuse flux of atmospheric neutrinos
 - A negligible (<5%) fraction of wrongly reconstructed muon tracks
 - The background is measured from the events observed "offsource"
 - The statistical tests are applied on a sample of events selected following a "blind procedure":
 - Randomizing right ascension and/or time distributions of events

Background estimation:

From the event densities as a function of declination. At the South Pole each declination region has the same coverage

α=24h

Off-Source

Searches in the Northern Sky:

Angular cuts are applied to the reconstructed events to reject atmospheric (i.e. down-ward going) muons

 $\alpha = 0h$

δ=90°

On-Source

ApJ 583, 1040 (2003) Phys. Rev. Lett. 92, 071102 (2004) Astropart. Phys. 22, 339 (2005)

The data sample:

3329 up-going selected neutrinos detected **between 2000 and 2003** The sample is optimized for the best sensitivity to point sources with energy spectum proportional to both $dN/dE \sim E^{-2}$ and E^{-3}

Selected events between 2000 and 2003

3329 \uparrow observed neutrinos in the Northern Sky

Point Sources search:

- 1. Search for excesses of events integrated in 4 years, coincident with:
 - A set of **selected candidate** sources (33 objects)
 - The full Northern Sky
- 2. Search for time variable signals

Statistical test of 33 pre-selected objects

LS	Source	Nr. of v events	Expected background	Φ _{90%} (E _v >10 GeV) [10 ⁻⁸ cm ⁻² s ⁻¹]	\mathcal{X}
laza	Markarian 421	6	5.6	0.7	$\sim = 2.25^{\circ} - 3.75^{\circ}$
	Markarian 501	5	5.0	0.6	$\left(\bigcup_{n=1}^{\infty} 807 \text{ days} \right)$
B	1ES 1426+428	4	4.3	0.5	
e	1ES 2344+514	3	4.9	0.4	
	1ES 1959+650	5	3.7	1.0	
	QSO 0528+134	4	5.0	0.4	The statistical
ILS	QSO 0235+164	6	5.0	0.7	significance is
seV Blaza	QSO 1611+343	5	5.2	0.6	evaluated with
	QSO 1633+382	4	5.6	0.4	MC experiments
	QSO 0219+428	4	4.3	0.5	
	QSO 0954+556	2	5.2	0.2	on events with
0	QSO 0716+714	1	3.3	0.3	randomized right
	SS433	2	4.5	0.2	ascension
rs	GRS 1915+105	6	4.8	0.7	
Sal	GRO J0422+32	5	5.1	0.6	
ua	Cygnus X-1	4	5.2	0.4	
ğ	Cygnus X-3	6	5.0	0.8	The chance
C C	XTE J1118+480	2	5.4	0.2	probability of
Vlic	CI Cam	5	5.1	0.7	such an excess
2	LSI +61 303	3	3.7	0.6	(or higher) in any
Rs	SGR 1900+14	3	4.3	0.4	of the 22 objects
	Crab Nebula	10	5.4	1.3	of the 33 objects
SN	Cassiopeia A	4	4.6	0.6	is 64%
•••	Geminga	3	5.2	0.3	

10/11/2005

E. Bernardini -- Multi-messenger Workshop -- DESY

Search for clusters in the Northern Sky

The Significance map:

From the search for clusters in direction, using a system of highly overlapping bins

Highest deviation 3.4 σ

The probability of this excess (or higher) in any of the sky bins, due to a background fluctuation is **92%**

Search for time variable signals – Part 1: active periods

Search for coincidences with known periods of enhanced electromagnetic emission:

- Periods and sources selected based on the existing multiwavelength information and the current theoretical understanding
- Wavelengths: indicators for possible correlated v's X-ray for two Blazars and radio for one Microquasar

Search for time variable signals – Part 2: v flares

Search for ν flares using time-sliding windows:

Observations from the direction of 1ES 1959+650

An interesting coincidence with a gamma-ray flare:

5 events observed compared to **3.7 background** expected from atmospheric neutrinos, between 2000 and 2003.

3 events are within 66 days in 2002, partly overlapping a period of major activity of the source

Results from the search for neutrino Point Sources

- No statistically significant excess integrated in 4 years
- No statistically significant excess in the search for time variable signals

All observed events are consistent with atmospheric neutrinos

Assessment of the systematic uncertainty (in the flux upper limit) and publication in progress
Analysis of data from 2004 and 2005 with new developments

Part 2: Towards possible Target of Opportunity measurements based on AMANDA / IceCube observations

The IceCube multi-messenger approach

Established off-line (blind) analyses:

- Use constraints from **existing data on the electromagnetic emission** of candidate sources to focus searches and limit the trial factors
- Proof of principle from the analysis of AMANDA data from 2000 to 2003, develop for analysis of 2004 and 2005 data

	Data Analysis	Data input
Search for v's in coincidence with observed (known) active states	Based on data on the electromagnetic emission sources candidates and periods of interest are selected	 Combined light curves at different wavelengths Sample of v's optimized for the duration of the periods of interest
Search for v's flares	 Based on data on the electromagnetic emission sources candidates are selected Search for clusters in time of v's 	 Combined light curves at different wavelengths (define the time-scale) Sample of v's optimized for the expected time- scale(s)

Towards neutrino-based Target of Opportunity measurements:

- Promising with the advent of IceCube
- Can be explored with AMANDA to collect information on the possible phenomenology of the objects accessible

Based on the current AMANDA on-line neutrino event reconstruction, an alarm could be issued to an **IceCube referent** and to one (or more) **coordinators** of **partner experiments**

Constraints for the neutrino-based alarm

Perform case studies to:

Feasibility of a v-based Target of Opportunity?

- The majority of on-line filtered events will stem from **atmospheric neutrinos**
 - A "potential" hadron trigger

Possible implications for gamma-ray observatories:

- Interference with other ToO programs and / or observation plans:
 - Define priorities
 - If the selected sources belong to the independent measurements program the v-based ToO would require no extra observation time

Possible implications for AMANDA (IceCube):

- Interference with the "blindness principle" for off-line analyses:
 - Events cuts and / or periods selection for off-line cross correlation searches should not be adapted based on the results of the target of opportunity alert
 - No issue for correlation with flares that would have not been detected otherwise

Possible sources of interest

First "trial":

TeV Blazars Markarian 421, Markarian 501, 1ES 1959+650

Neutrino event rates (800 days of effective exposure):

Source	δ (°)	n _{obs}	n _{bck}
Markarian 421	38.2	6	5.6
Markarian 501	39.8	5	5.0
1ES 1959+650	65.1	5	3.7

Expected alarm rate:

~10 /year, to be matched with the operation time of the gamma-ray telescopes

To be considered in addition:

- GeV Blazars **3C 273** and **3C 279** currently non in the list of (33) selected neutrino candidate sources
- Variable Micro-quasars LSI +61 303 + ?

The current cut strength based on 4 yr of data corresponds to a fraction of the expected signal between approx. 65% and 75%

To increase the alarm rate, a possible (stable) choice is to increase the search window bin size

The rate of selected neutrino candidates can be "tuned", based on a fixed class of events (quality of the reconstructed track)

The AMANDA-II Point Spread Function (highlighted the range of bin sizes used for analysis)

A scheme for the neutrino-based alert

10/11/2005

On-line filter event rates, a very first look

By applying the event selection developed for the analysis of 4 yr of AMANDA data (same cuts), the event rates from the on-line analysis look stable:

Final level distributions (all runs)

v to γ -ray correlation: the statistical test

Prior to the trigger implementation it is necessary to define:

1. Time window for the coincidence

Min. Depends on the delay in delivering the alert and on the first time slot available for gamma-ray measurements

Max. Depends on the **time evolution** of the flares and on the time scale of the expected correlation between gamma-rays and neutrinos

2. Topology of the gamma-ray flares

E.g. Define the minimal gamma-ray flux that might be accompanied by a detectable v signal

3. Probability of random coincidences

Based on the measured v rates and expected gamma-ray flares rates

Feasibility study for a Target of Opportunity program

- Assessment of the performance of the AMANDA on-line event filtering procedures and automatic data-quality tagging (in progress)
- Create multi-messenger working groups
 - Compile a proposal clarifying:
 - 1. Case studies (physics potential)
 - 2. Selected targeted sources
 - 3. Partner experiments
 - 4. Constraints on neutrino event rates and fake-alert probability
 - 5. Performance of the on-line AMANDA filtering
 - 6. Definition of the statistical tests and definition of coincidences
 - Tests

Thank you!

ON-LINE filtering (point source stream)

	Reconstruction / filtering step	Event cut		
Class 1	BAD/dead OM selection (dynamical)			
noise	Pulse shape cuts (OM-wise)			
rejection	Correlated noise checks			
Re-triggering (multiplicity 24)				
Class 2	ADC cleaning (reject <0.1 p.e.)			
noise rej.	Isolated hits and early/late hits rejection			
Fits	Fits Direct Walk ("first guess (*)")			
	JAMS ("first guess")	θ>80°	L1	
	32-fold likelihood reconstruction (**)			
Smoo		Smooth<0.4	L3	
	16-fold bayesian reconstruction (**)			
Track resolution (shape of the likelihood valley)				
	The inclusion (shape of the inclusion	a vancy)		

(*) ~ 10^{-3} s/events for 2.5 GHz (**) ~ 1 s/events

10/11/2005

E. Bernardini -- Multi-messenger Workshop -- DESY

Detection channels in AMANDA

Channel	Pointing Resolution	σ[log ₁₀ (E/TeV)]	Coverage
↑ μ -tracks	1.5° - 2.5°	~ 0.4 (>1 TeV)	2π
Cascades	30° - 40°	0.1 – 0.2	4π