

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Ausgewählte Ergebnisse des H.E.S.S. Experimentes

Ullrich Schwanke, Humboldt-Universität zu Berlin, für die H.E.S.S. Kollaboration

Stereoskopie

A

 \mathcal{H}

Mehrere Beobachtungswinkel erlauben Rekonstruktion der Quellposition für jedes Ereignis

Richtung

zur Quelle

Methoden

Schauerrekonstruktion und/oder Gamma-Hadron-Separation:

> Parameterisierung der Schauerbilder als gerichtete Ellipsen, oder ML-Fit aller Kamerabilder an ein Schauermodell Energieskalierte box

cuts

Neuronale Netzwerke

Tscherenkow-Systeme

MPI Kernphysik, Heidelberg Humboldt-Univ. zu Berlin Ruhr-Univ. Bochum **Univ. Hamburg** LSW Heidelberg Univ. Tübingen Ecole Polytechnique, Palaiseau **APC Paris** Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy LAOG Grenoble LPTA Montpellier **CEA Saclay CESR** Toulouse Durham Univ. Dublin Inst. for Adv. Studies **Charles Univ.**, **Prague** Yerewan Physics Inst. North-West Univ., Potchefstroom Univ. of Namibia, Windhoek

High Energy Stereoscopic System

Juni 2002

September 2003

Februar 2003

Dezember 2003

4 Teleskope seit 12/2003 Gesichtsfeld: 5° Sensitive Fläche: 50.000 m² Energieschwelle: 100 GeV Richtungsauflösung: ~0.1° (stereoskopisch) $\Delta E/E < 20\%$ Stark verbesserte Sensitivität (5 σ): 5 % Crab in 1 h 1% Crab in 25 h

High Energy Stereoscopic System

Juni 2002

September 2003

Februar 2003

Dezember 2003

H.E.S.S. Resultate – Eine Auswahl

- Durchmusterung der Inneren Galaxie nach TeV γ Quellen
- Unidentifizierte Quellen ("Dunkle Beschleuniger")
- Supernova-Reste als mögliche Quellen der Kosmischen Srahlung
- Binärsysteme als TeV γ-Quellen
- Das Zentrum der Galaxie als Emitter von γ -Strahlung
- Aktive Galaxienkerne: Wieviel Licht gibt es im Universum?

Durchmusterung der galakt. Ebene

Erste sensitive Durchmusterung (~2% Crab) der inneren Galaxie

±30° (±3°) in galakt. Länge (Breite)

15 neue TeV Gamma-Quellen + 3 bekannte

Mehrheit der Quellen ausgedehnt (aufgelöst falls >2..3')

Galactic Longitude (°)

Eigenschaften

Skalenhöhe $\approx 0.3^{\circ} \approx Gas$

Relative harte Spektren

Klassifizierung

5 Quellen fallen mit Supernova-Resten (SNR) zusammen

Galactic Longitude (°)

Klassifizierung

5 Quellen fallen mit Supernova-Resten (SNR) zusammen

HESS J1834-087

cm⁻² s⁻¹)

10

10

dN/dE (TeV¹

 10^{-1}

Klassifizierung

5 Quellen fallen mit Supernova-Resten (SNR) zusammen

3 könnten (vom Pulsar entfernte) Pulsarwind-Nebel (PWN) sein

Einige fallen mit unid. EGRET oder ASCA-Quellen zusammen

3 Quellen ohne Gegenstück in anderen Wellenlängen

Galactic Longitude (°)

Jetzt identifiziert: HESS J1813-178

Anfangs nicht identifiziert, jetzt Assoziationen mit Röntgen (ASCA u. Integral) und Radio (VLA)

Wohl ein Supernovarest

Konturen (weiß): ASCA 0.7-10 keV Konturen (schwarz): VLA 20 cm

Nicht identifizierte Quellen

Dunkle Hadron-Beschleuniger ? Wechselwirkung Kosmischer Strahlung mit Molekülwolken? Klumpen Dunkler Materie ? Sterne (Wolf-Rayet, OB) ? –5 Quellen dieser Art (4x HESS, 1x HEGRA)

SNR als Beschleuniger der Kosmischen Strahlung

Diffuse Schockwellen-Beschleunigung sagt Potenzgesetz E^{-2.0..2.2} vorher

Effizienz O(10%)

Abbildung der SNRs durch sekundär erzeugte Gamma-Strahlung

Energiefluss

SNR als Beschleuniger der Kosmischen Strahlung

Diffuse Schockwellen-Beschleunigung sagt Potenzgesetz E^{-2.0..2.2} vorher

Effizienz O(10%)

Abbildung der SNRs durch sekundär erzeugte Gamma-Strahlung Radio Röntgen TeV Energie

SNR als Beschleuniger der Kosmischen Strahlung

Diffuse Schockwellen-Beschleunigung sagt Potenzgesetz E^{-2.0..2.2} vorher

Effizienz O(10%)

Abbildung der SNRs durch sekundär erzeugte Gamma-Strahlung

SNR als Beschleuniger der Kosmischen Strahlung

Diffuse Schockwellen-Beschleunigung sagt Potenzgesetz E^{-2.0..2.2} vorher

Effizienz O(10%)

Abbildung der SNRs durch sekundär erzeugte Gamma-Strahlung

Aufgelöste SNR

Konturen: Röntgen-Daten (ASCA bzw. ROSAT)

RX J1713: Energiespektrum

Index ~ 2.1-2.3

Gekrümmtes Spektrum

Ortsaufgelöste Energiespekten

TeV-Photonindex

Röntgen-Photonindex

 Γ_{TeV} =const. schwer zu verstehen in Elektron-Szenario

Elektron- und Hadronszenario

Elektron-Modell, B~10 µG

Hadron-Modell

-Beschreibung durch Hadronen bevorzugt

Binärsysteme (1/2): PSR B1259

Mar 04 März 2004

Pulsar + ~10 M_↓ Be Stern

Stark exzentrische Bahn, Umlaufzeit 3.4 Jahre Annäherung bis auf 10 R_{*}(10¹³ cm)

Binärsysteme (1/2): PSR B1259

Mechanismus: IC am Sternenwind?

-Erste variable galakatische Quelle im TeV Bereich

Binärsysteme (2/2): LS 5039

Binärsysteme (2/2): LS 5039

Kompaktes Object (~3.7 M_{\bullet}) in exzentrischer Umlaufbahn (T=3.9 d) um Stern (23 M_{\bullet}), Annäherung bis auf 2 R_{*}

Optische Variabilität --Suche nach Variabilität im TeV Bereich

Quelle der TeV Strahlung? – Kombination mit anderen Wellenlängen

Akkretion ?

-Ærster TeV Mikroquasar!

Das galaktische Zentrum

GC/HESS J1745-290

11.9 🕈

G0.9+0.1/HESS J174 -281

HESS J1804-216

Galactic Latitude (°)

0

10

Starkes Signal vom Galaktischen Zentrum

4.0

Sagittarius A

Energiespektrum

Potenzgesetz, Photonindex 2.3 Keine signifikante Variabilität auf Skalen von Jahren Monaten Tagen Stunden Minuten 40 h Daten, verteilt über 2 Jahre

Interpretation

Prozesse in der Nähe des Schwarzen Loches Sgr A* ?

Supernovarest Sgr A Ost ?

Interpretation

Prozesse in der Nähe des Schwarzen Loches Sgr A* ?

Supernovarest Sgr A Ost ?

Dunkle Materie —ærscheint wenig wahrscheinlich

Die Region um das Galakt. Zentrum

Die Region um das Galakt. Zentrum

...nach Subtraktion der zwei bekannten Punktquellen

Diffuse Emission vom GZ

Photonindex 2.29 \pm 0.07 \pm 0.20

Härteres Spekrum und etwa dreimal höhere Dichte Kosmischer Strahlung als in der Nähe des Sonnensystems → Nähe zu Quellen

Ursache: Quellpopulation oder dominante Einzelquelle ?

Extragalaktische Quellen - Blazare

 \mathbf{N}

Absorption im (infraroten) extragalaktischen Untergrundlicht (EBL) γ (TeV) + γ (EBL) $\rightarrow e^+e^-$

 γ

E

-Kosmologie

dN/dE

Ε

EBL: Messungen

Zwei neue AGN bei hohem z

1ES 1101 ist TeV-Quelle mit bisher größter Rotverschiebung z Spektren weniger steil abfallend als erwartet —weniger EBL als angenommen ?

Energiespektren und das EBL

Energiespektren und das EBL

Obere Grenze auf den Fluss von EBL-Photonen unter der Annahme, dass intrinsische AGN-Spektren Γ >1.5 haben

EBL: Neue obere Grenzen

Zusammenfassung und Ausblick

H.E.S.S. Phase I hat das Fenster zum Himmel im TeV-Bereich weit geöffnet

Sensitive Durchmusterung der Inneren Galaxie

Auflösung ausgedehnter Quellen

Zukunft: H.E.S.S. II

Bau eines großen Teleskops 2007/2008

Verbesserte Sensitivität (~ 8 H.E.S.S. I Teleskope) und niedrigere Schwelle (*O*(20 GeV))

Backup Slides

Pulsarwind-Nebel

Energieverlust durch e[±]-Wind

Umkehrschock kollidiert mit durch den Pulsarwind erzeugten Blase geringerer Dichte Asymmetrischer Pulsarwind-Nebel durch Dichtegradient

Umkehrschock aus dichterem Medium trifft eher ein

Beispiel: Vela X

Pulsarwind-Nebel innerhalb des Vela SNR (Ø 8°)

Keine gepulste Emission vom Vela-Pulsar beobachtet

Pulsarwind-Nebel aufgelöst im TeV-Bereich

Hartes Spektrum bis 50 TeV

TeV-Gammas machen e-Population direkt sichtbar

 \rightarrow

Annahme einer zusätzlichen UV-Komponente kaum verträglich mit Energiebilanz der Quellen