Solar neutrinos

Status and prospects

Results of five years of GNO

Energy spectrum Ge- electron capture

Time spectrum

Results of five years of GNO

- Full solar cycle
- compatible with flat distribution
- slight time drift not excluded
- gaussian distributions

Combined GALLEX/GNO result

	GNO	GALLEX	GNO + GALLEX	
Time period	05/20/98-04/09/03	05/14/91 - 01/23/97 ^a	05/14/91-04/09/2003 ^b	
Net exposure time [d]	1687	1594	3281 (8.98 yrs)	
Number of runs	58	65	123	
L only [SNU]	$68.2 \pm \frac{8.9}{8.5}$	74.4 ± 10	70.9 ± 6.6	
K only [SNU]	$59.5 \pm \frac{6.9}{6.6}$	79.5 ± 8.2	67.8 ± 5.3	
Result (all) [SNU]	62.9 ± ^{5.5} _{5.3} stat. ± 2.5	77.5 \pm 6.2 stat. $\pm {}^{4.3}_{4.7}$	69.3 ± 4.1 stat. ± 3.6	
Result (all) [SNU] ^c	$62.9 \pm \frac{6.0}{5.9}$ incl. syst.	$77.5 \pm \frac{7.6}{7.8}$ incl. syst.	69.3 ± 5.5 incl. syst.	
^a except periods of no recording: 5-8/92; 6-10/94, 11/95-2/96				
^o except periods of no recording: as before, + 2/97-5/98				

statistical and systematic errors combined in quadrature. Errors quoted are 10.

- reduction of statistical and systematical uncertainties
- supression factor for low-E neutrinos (pp and ⁷Be): P = 0.556 + 0.071
- L(CNO) / L(sun) < 6.5 % (3 sigma)

PL B 616 (2005) 174

Results from SAGE

15 years of measurement (50 t)
R = 67.2 + 5.2 - 4.8 SNU

Results from SAGE

New test of Ga neutrino cross section with ³⁷Ar

Cross section ⁷¹Ga (v,e)⁷¹Ge ?

Cr and Ar measurements combinedIs there a problem ?

The weighted average value of R, the ratio of measured to predicted ⁷¹Ge production rates, is 0.88 ± 0.05 , more than two standard deviations less than unity.

SNO results

L. Oberauer, TU München

SNO results

Flavor transition proven by 7 sigma
Agreement with solar models

 $\phi_{CC} = 1.68 \, {}^{+0.06}_{-0.06} (\text{stat.}) {}^{+0.08}_{-0.09} (\text{syst.})$ $\phi_{NC} = 4.94 \, {}^{+0.21}_{-0.21} (\text{stat.}) {}^{+0.38}_{-0.34} (\text{syst.})$ $\phi_{ES} = 2.35 \, {}^{+0.22}_{-0.22} (\text{stat.}) {}^{+0.15}_{-0.15} (\text{syst.})$ (In units of 10⁶ cm⁻²s⁻¹)

NC: $D + v_x \rightarrow p + n + v_x$

SNO results

Improved accuracy on Θ_{12} Non maximum mixing by 5 sigma LMA-solution: very small spectral deformation, day/night ~3% ok with SNO and SK data

Prospects

- Low energy neutrino spectroscopy: ⁷Be, pp, pep, CNO
- Detailed information about thermal fusion processes
- ⁷Be: a 10% measurement yields determination of ppflux with < 1% uncertainty</p>
- pp, pep: yields present solar luminosity
- CNO: important for massive stars
- Matter effects: improve sensitivity on mixing parameter, looking for new effects

CNO

- New value of ${}^{14}N(p,\gamma){}^{15}O$ cross section (LUNA)
- New measurements metal/hydrogen on solar surface: from 0.023 to now 0.0176
- Consequence 1: CNO ν flux goes down to 50-70%
- Consequence 2: Age of globular clusters increases by 0.7 to 1 Gy !
- Consequence 3: Depth convective zone $R_{cz}/R_0 = 0.726$...but helioseismology says $R_{cz}/R_0 = 0.713 + 0.001 !$

Direct measurement of CNO – neutrinos required !

Matter effects

Confirm matter effect (determines mass hierarchy $m_2 > m_1$) with low E solar neutrinos Improve Θ_{12}, Θ_{13} Search for non-standard effects: sterile neutrinos, new interactions

Future experiments

experimer	it reaction	detector	
LENS	ν _e ¹¹⁵ In→e ⁻¹¹⁵ Sn,e,γ	60 tons In-loaded scintillator	
MOON $v_e^{100}Mo \rightarrow e^{-100}Tc(\beta)$		3.3 ton ¹⁰⁰ Mo foil + plastic scintillator	
Lithium v _e ⁷ Li→e ⁻⁷ Be		Radiochemical, 10 ton lithium	
BOREXING	O* ve-→ve-	100 ton Liquid scintillator (7Be only)	
KAMLAND) * ve-→ve-	1000 ton Liquid scintillator (7Be only)	
XMASS	ve-→ve-	10 ton Liquid Xe (pp, ⁷ Be)	
HERON	ve-→ve-	10 ton super-fluid He (pp, 7Be)	
CLEAN	ve-→ve-	10 ton Liquid Ne (pp, ⁷ Be)	
TPC type	ve-→ve-	Tracking electron in gas target (pp, 7Be)	
SNO (Liq.scint.)	νe-→νe-	1000 ton Liquid scintillator (pep, CNO)	
CC exp. (v_e only) ve scattering exp. (v_e + $\alpha(v_u$ +			

Borexino @ Gran Sasso

- ⁷Be solar neutrino measurement
- neutrino electron scattering
- CNO and pep neutrinos
- Long baseline reactor neutrinos
- Terrestrial neutrinos
- Supernova neutrinos
- Search for neutrino magnetic moment

Borexino

Inner Vessel Installation completed in 2004

Borexino Background

CTF III measurements (since Nov. 2001): U, Th, ¹⁴C, Kr, Ar ok! ²¹⁰Pb to be improved by ~10 Cosmogenic ¹¹C can be traced ! (important for pep- and CNO neutrino detection)

KamLAND solar neutrino phase

Kr: 10⁶ to high
²¹⁰Pb (and daughters): 10⁵
Cosmogenic bg x 7 compared to Borexino
R&D phase (distillation)

6 M\$ invest. System installation summer 2006

SNO+

Liquid scintillator 1kt (after heavy water period) Muon rate ~ 70 / d (KamLAND $26 \ge 10^3 / d$ Hence low ¹¹C background Pep + CNO

Future large scintillation detectors

- LENA (Low Energy Neutrino Astronomy)
 - ~ 50 kt, CUPP, Finland
- HSD (Hyper Scintillation Detector) ~50 kt, USA
- Baksan ~ 30 kt

flux variations in time (~5400 Be-events per day)

coincidences with helioseismology (g-modes) ?
day/night flux differences (earth matter effect) ?

- Relic supernovae neutrinos (star formation early universe)
- Geoneutrinos (probing geophysical models)
- Proton decay (probing GUTs)
- Long baseline neutrino detector (mixing parameter)
- Galactic supernova neutrinos (detailed study of a gravitational collapse)

Conclusions

- Low energy neutrino physics successfull
- Neutrino oscillations
- Much more insight into thermal nuclear fusion
- Future: low energy solar neutrino spectroscopy
- Neutrino parameter (matter effects)
- ⁷Be, CNO, pep neutrinos
- Technology allows to aim for ~50 kt detectors