Direkte Suche nach Dark Matter ...

ionization – phonon detectors

(T. Shutt et al. PRL 69 3425 1992, L. Bergé et al. NPB 70 69 1999)

- Phonon signal: ∆T/T ≈ 0.1% over t≈ms
- Charge signal:

≈ 1000 pairs over t≈µs

 γ s, β s ionize more than WIMPs, neutrons:

quenching of nuclear recoils

ionization – phonon signal plane

Klaus Eitel

Underground Sites

the EDELWEISS collaboration

Expérience pour détecter les WIMPs en Site Souterrain

IAP Paris

IPN Lyon

CRTBT Grenoble

CSNSM Orsay

DAPNIA Saclay

DRECAM Saclay

Forschungszentrum and Universität Karlsruhe

JINR Dubna

Klaus Eitel

Laboratoire Souterrain de Modane

Part of a European (ILIAS) network of underground labs

Edelweiss ionization-heat cryogenic detectors

- heat and ionisation Ge detector
- aluminium electrode (center + gard ring)
 + Ge amorphous layer
- NTD sensor on gard ring electrode
- Mass 320 g

Resolutions @ 10 keV • ionisation : 1.3 keV • heat : 1.0 keV

@ 122 keV
2.2 keV
3.0 keV

EDELWEISS-1 results

CDMS-2 experiment in Soudan

CDMS-2 results

data taking: 2 towers for 74.5 live days (March 25 to August 8, 2005) \rightarrow 34 kg.d of Ge \rightarrow 12 kg.d of Si

before surface e⁻ cuts (O)

after surface e⁻ cuts ()

1 "WIMP candidate" (★) in Ge at 10.5keV no event in Si

CDMS-2 & EDELWEISS-1 limits

Unknown background: Yellin method (CDMS´03) to derive exclusion limit without bg subtraction

62 kg.d limits consistent with earlier publication Phys.Lett. B**545** (2002) 43: no events observed above 20/30 keV in first 11.7 kg.d

model:

coherent spin-independent WIMP-nucleon scattering

Klaus Eitel

the near future: EDELWEISS-2

- completely new experimental configuration:
- new 100 liter cryostat
- EW-2 first phase: 21×320 g Ge-NTD detectors and

7×400 g Ge detectors with NbSi thin film

- EW-2 second phase: up to 110 crystals
- new shielding concept: \geq

20cm Pb + 50cm PE + active µ veto

time schedule:

- mounting started in 2005
- first cryogenic tests in Nov./Dec. 05
- first data taking in Jan. 06

neutron background suppression by

muon veto

Low energy neutrons induced by U/Th activities :

- a in surrounding rock/concrete (fission and (α, n) reactions)
- b in Pb/Cu Shield (fission reactions)

High energy neutrons induced by muons :

- c in the rock
- d in Pb/Cu shield

EDELWEISS-2 installation in LSM

insert cryostat here

mobile 20 cm Pb γ shielding (30t, archaeological Pb lining)

50 cm (30t) PE as neutron moderator

Klaus Eitel

EDELWEISS-2 installation in LSM

Klaus Eitel

Conclusion and Outlook

