

Das KATRIN Experiment

Karlsruhe Tritium Neutrino Experiment

im Aufbau am Tritiumlabor Karlsruhe (TLK) am Forschungszentrum Karlsruhe

Fensterlose Tritiumquelle - Auslegung

molekulare gasförmige ß-Quelle maximaler Luminosität (10¹¹ ß/s)

• integrales Designkriterium: Säulendichte $\rho d = 5 \times 10^{17}$ Moleküle / cm²

Präzision: ± 0.1%

Einzelkriterien:

- Magnetfeld
- Tritiuminjektion
- Temperatur
- Pumpleistung

 $B = 3.6 T (\pm 2\%)$

- 5 × 10¹⁹ Mol/s (= 4.7 Ci/s = 1.7 1011Bq/s = 40 g / d)
- T = 27-30K ∆T ≤ 30 mK
- 12.000 {/s

12/2004: Auftragsvergabe

WGTS – Technisches Design

Technical Design Report (August 2005)

✓ Konzept Strahlrohrkühlung ∆T < 30 mK

- Magnetdesign: Inhomogenität ∆B/B < 2%
- diff. Pumpen: Leitwert Pumpport > 2000 ℓ/s ☑

WGTS – Kühlkonzept Strahlrohr

- räumlich (Homogenität):
- zeitlich (Stabilität):

± 0.1% pro Stunde

± 0.1% entlang Strahlrohr

Fensterlose Tritiumquelle: T₂ – Kreislauf

Testexperiment TILO

Design Tritiumkreislauf im TLK

Experimentelle Ziele

- Test molekularkinet. Modelle
- Meß- und Regeltechniksystem

Messungen seit Juni 2005

G. Drexlin, FZ & Univ. Karlsruhe

Kryogene Pumpstrecke - Auslegung

Aufgabe: Rückhaltung Tritiumfluß aus differ. Pumpstrecke
 ➡ T₂-Partialdruck Spektrometer p < 10⁻²⁰ mbar
 Methode: Kryosorption an kondensiertem Ar-Frost
 Rate: <1 Ci T₂ in 60 Tagen (Regeneration mit He-Gas)

Kryogene Pumpstrecke - TRAP

Testexperiment TRAP:

erste Messungen mit DT im August/Sept. 2005:

- Sorptionsrate an Ar-Schnee ☑
- keine sichtbare T_2 Migration \square
 - ♥ tritiumfreie Spektrometer

- T₂ - Sorption an Ar - T₂ - Migration?

<u>Tritium Argon Pump</u>

Elektrostatische Spektrometer - Auslegung

Tandem: Vorfilter & Energieanalyse von ß-Zerfallselektronen

Elektrostatische Spektrometer - Auslegung

Tandem: Vorfilter & Energieanalyse von ß-Zerfallselektronen

Vorspektrometer - Status

Resultate UHV-Messungen: 4-12/04

- Ausgasrate @ -20°C
 1.6 × 10⁻¹³ mbar l / cm² s
- Enddruck @ RT p < 10⁻¹¹ mbar (Langzeitbetrieb)

♥ UHV-Konzept ☑

Astroteilchen-Workshop, Zeuthen 4.-6.9.2005

Vorspektrometer – elmagn. Tests

Aufgabe: Verifikation des elektromagnetischen Konzeptes

Hauptspektrometer – Fertigung

Plasmaschneiden unter Wasser

Ertigungshalle DVE

Edelstahlbleche nach Plasmaschneiden

G. Drexlin, FZ & Univ. Karlsruhe

Hauptspektrometer – Transportlogistik

G. Drexlin, FZ & Univ. Karlsruhe

Hauptspektrometer – innere Elektrode

Aufgaben des inneren Draht-Elektrodensystems:

- Untergrundreduktion

Abschirmung niederenerget. Elektronen Entleerung gespeicherter Teilchen

- Feinformung Retardierungspotential

Inneres Draht-Elektrodensystem

DoppellagigesSystem (U Münster)1. Drahtebeneparallel/äquidistantzu Spektrometerwandconst. Drahtanzahlconst. U₁ = U_{sp} + Δ U₁

2. Drahtebene nicht äquidistant var. Drahtanzahl var. U₂ = U_{sp} + Δ U₂ Durchhang: sub-mm!

G. Drexlin, FZ & Univ. Karlsruhe

Inneres Draht-Elektrodensystem

Montagesystem für inneres Elektrodensystem ! Montage muß UHV-kompatibel sein !

G. Drexlin, FZ & Univ. Karlsruhe

Astroteilchen-Workshop, Zeuthen 4.-6.9.2005

extrem präziser HV-Teiler

Präzisions-HV Versorgung

Messungen erfordern HV Stabilisierung/Monitoring/ Kalibration auf ppm Niveau (wideband: DC bis MHz)

G. Drexlin, FZ & Univ. Karlsruhe

Fokalebenendetektor

Astroteilchen-Workshop, Zeuthen 4.-6.9.2005

KATRIN Designoptimierung

Verbesserung der exp. Sensitität (2001-04)

KATRIN Sensitivität

Sensitivitätsoptimierung: Lol (2001) \rightarrow Referenzdesign (2004)

- verbesserte Statistik: Quell-Luminosität, T₂ Reinheit <u>verbesserte Sensitivität</u>
- reduzierte Systematik: ß-Wechselwirkung in Quelle

KATRIN Sensitivität & ßß-Zerfall

Sensitivitätsoptimierung: Lol (2001) \rightarrow Referenzdesign (2004)

KATRIN Sensitivität & ßß-Zerfall

Sensitivitätsoptimierung: Lol (2001) \rightarrow Referenzdesign (2004)

KATRIN Kollaboration

K. Maier, R. Vianden Universität Bonn, Helmholtz - Institut für Strahlen- und Kernphysik (D)

J. Herbert, O. Malyshev, R. Reid ASTeC*, CCLRC- Daresbury Laboratory, Daresbury (UK) (*Expertengruppe)

I.N. Meshkov, Y. Syresin JINR*, Dubna (RU) (*assoz. Mitglied)

A. Osipowicz Fachhochschule Fulda, FB Elektrotechnik (D)

T. Armbrust, L. Bornschein, G. Drexlin, F. Eichelhardt, F. Habermehl, F. Schwamm, J. Wolf Universität Karlsruhe, Institut für Experimentelle Kernphysik (D)

z.Zt. 105 Mitglieder D-USA-UK-RU-CZ-BR 18 Institute neu 2005: MIT, UCL

J. Blümer, K. Eitel, A. Felden, B. Freudiger, F. Glück, S. Grohmann, R. Gumbsheimer, T. Höhn, H. Hucker, N. Kernert, H. Krause, M. Mark, X. Luo, K. Müller, S. Mutterer, P. Plischke, K. Schlösser, U. Schmitt, M. Steidl, H. Weingardt Forschungszentrum Karlsruhe, Institut für Kernphysik (D)

A. Beglarian, H. Gemmeke, S. Wüstling Forschungszentrum Karlsruhe, Institut für Prozeßdatenverarbeitung und Elektronik (D)

C. Day, R. Gehring, K.-P. Jüngst, P. Komarek, H. Neumann, M. Noe, M. Süßer Forschungszentrum Karlsruhe, Institut für Technische Physik (D)

U. Besserer, B. Bornschein, L. Dörr, M. Glugla, G. Hellriegel, O. Kazachenko, P. Schäfer, J. Wendel Forschungszentrum Karlsruhe, Tritium Labor Karlsruhe (D)

M. Keilhauer, M. Neuberger, A. Weis Forschungszentrum Karlsruhe, S-Bereich: Kfm. Projektabwicklung/Aufträge (D)

J. Angrik, J. Bonn, R. Carr, K. Essig, B. Flatt, C. Kraus, E.W. Otten, P. Schwinzer, D. Sevilla Sanchez Universität Mainz, Institut für Physik (D)

H.W. Ortjohann, B. Ostrick, M. Prall, T. Thümmler, N.A. Titov, K. Valerius, C. Weinheimer Universität Münster, Institut für Kernphysik (D)

G.R. Myneni Jefferson Laboratory/Old Dominion*, Newport News (USA) (*Expertengruppe)

F. Sharipov

Universidade Federal do Parana*, (Brasilien) (*Expertengruppe)

E.V. Geraskin, O.V. Ivanov, V.M. Lobashev, S. Osipov, A. Skasyrskaya, V. Usanov, S.A. Zadorozhny Academy of Sciences of Russia, INR Troitsk (RU)

O. Dragoun, J. Kašpar, A. Kovalík, M. Ryšavy, A. Špalek, D. Vénos, M. Zbořil Czech Academy of Sciences, NPI, Řež / Prague (CZ)

T. Burritt, P.J. Doe, J. Formaggio, G. Harper, M. Howe, M. Leber, K. Rielage, R.G.H. Robertson, T. Van Wechel, J.F. Wilkerson University of Washington, Seattle (USA)

M. Charlton, A.J. Davies, R. Lewis, H.H. Telle University of Wales, Swansea (UK)

KATRIN Zeitplan

2001	Gründung der KATRIN Kollaboration, Lol: <i>hep-ex/0109033,</i> BMBF Förderung ,Astroteilchenphysik ⁴
2002	Untergrundstudien, F&E Arbeiten
2003	Vorspektrometer, Auftag für erste große Magnetgruppe
2004	Begutachtung HGF Programm, Design Report 2004, Aufträge für Hauptspektrometer, WGTS & He-Verflüssiger,
2005-07	elektromagn. Tests Vorspektrometer Aufbau & Test der Hauptkomponenten (WGTS, Spektrometer Transportelemente, Experimenthallen,)

G. Drexlin, FZ & Univ. Karlsruhe

KATRIN Zeitplan

2001	Gründung der KATRIN Kollaboration, Lol: <i>hep-ex/0109033</i> BMBF Förderung ,Astroteilchenphysik ⁴
2002	Untergrundstudien, F&E Arbeiten
2003	Vorspektrometer, Auftag für erste große Magnetgruppe
2004	Begutachtung HGF Programm, Design Report 2004, Aufträge für Hauptspektrometer, WGTS & He-Verflüssiger,
2005-07	elektromagn. Tests Vorspektrometer Aufbau & Test der Hauptkomponenten (WGTS, Spektrometer Transportelemente, Experimenthallen,)
2008	Systemintegration & Inbetriebnahme von Systemabschnitten erste Test-Messungen
2009-14	Tritiumessungen

wichtige Fragestellungen für Zukunft:

1. "what are the masses of the neutrinos?"

KATRIN - einziger modellunabhängiger Ansatz - Aufbauarbeiten schreiten zügig voran