

Motivation, Concept, Status

Allen Caldwell Max-Planck-Institut f. Physik

Motivation

Hierarchies

Oscillation experim angles $(\theta_{12}, \theta_{23})$ as $(m_2^2 - m_1^2, |m_1^2 - m_3^2| \in$ third mixing angle.

- 1. absolute mas:
- 2. mass hierarcl

normal

- 3. nature of neutrino (Majorana, Dirac particle)
- 4. value of third mixing angle
- 5. CP phases

Double beta decay experiment can address 3, and, if neutrinos are Majorana particles, then also a combination of 1,2,5.

Double Beta Decay

With pulse shape analysis

H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets (Heidelberg, Max Planck Inst.)
Phys.Lett.B586:198-212,2004

Background: 0.11/keV/kg/yr

Ov DBD signal ??

Claim: 4.2σ signal $T_{1/2}=1.2 \ 10^{25}$ yr

Some of the

 $^{48}Ca \rightarrow ^{48}Ti$ $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ $^{82}Se \rightarrow ^{82}Kr$ 96 Zr \rightarrow 96 Mo $^{100}Mo \rightarrow ^{100}Ri$ ¹¹⁶Cd \rightarrow ¹¹⁶Sn $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ 136 Xe \rightarrow 136 Ba 150 Nd \rightarrow 150 Sn

Nuclear Physics
 Los Alamos

A Great Number of Proposed Experiments

COBRA	Te-130	10 kg CdTe semiconductors	
DCBA	Nd-150	20 kg Nd layers between tracking chambers	
NEMO	Mo-100, Various	10 kg of $\beta\beta$ isotopes (7 kg of Mo)	
CAMEO	Cd-116	1 t CdWO ₄ crystals	
CANDLES	Ca-48	Several tons CaF_2 crystals in liquid scint.	
CUORE	Te-130	750 kg TeO ₂ bolometers	
EXO	Xe-136	1 ton Xe TPC (gas or liquid)	
GEM	Ge-76	1 ton Ge diodes in liquid nitrogen	
GENIUS	Ge-76	1 ton Ge diodes in liquid nitrogen	
GSO	Gd-160	2 t Gd ₂ SiO ₅ :Ce crystal scint. in liquid scint.	
Majorana	Ge-76	500 kg Ge diodes	
MOON	Mo-100	Mo sheets between plastic scint., or liq. scint	
Xe	Xe-136	1.56 t of Xe in liq. Scint.	
XMASS	Xe-136	10 t of liquid Xe	
Sept. 2003	Elliott, T.	AUP 2003, Seattle, WA	14

Why Germanium

Germanium is a g excellent energy binning, so less bc irreducible backg only be distinguisl

• considerable ext 0.0 0.2 0.4 0.6 0.8 1.0 } Mosco IGEX, Majorana. Some nope That we know background sources & can reduce it.

- enrichment possible (but expensive)
- possibilities for further development (segmentation)

Lesson from Previous Experiments

Suppressing External Backgrounds

Goal: Reduce external backgrounds to 10⁻³/keV/kg/yr with LN, factor 10 less with LAr

Ø 10 m water vessel Ø 4 m Cu cryostat 45 m³ of LN (LAr) 650 m³ of water

Allen Caldwell, MPI München

Background sources:

- \cdot Cosmogenically produced ^{68}Ge and ^{60}Co
- U/Th contamination, ²¹⁰Pb on surface

Signatures:

- Signal has two electrons in final state \rightarrow range ~mm
- Background sources mostly γ with E_{γ}>2 MeV
- Compton scattering dominant interaction, range ~few cm

Detector Setup

18-fold segemented detectors (true-coaxial, 3x6, n-type)

Phase II detectors

LoI to LNGS with proto-colla

to submit proposal

Gerda

Some Pictures

LArGe Facility @ LNGS

Underground laboratory for detector refurbishment and testing of phase-I detectors Waşhstand with high-purity water supply

Fume hood with charcoal filter and vent

(June 05)

Some Pictures

Mounting of LArGe shield

HD-Moscow's KI-detectors were handed over to GERDA

Production of 37.5 kg enriched Ge in Siveria (ECP)

- Enrichement completed next steps:
- purification of enriched Ge (99.9% \rightarrow 99.9999% pure)
- reduction
- monozone, polyzone refining
- crystal growing
- detector production

Teststands at the MPI Munich are under construction:

- Test bare crystals in liquid nitrogen for handling, robustness, resolution (n-type and p-type)
- Investigation of detector properties such as dead layers, segmentation, crystal orientation effects etc in vacuum teststand

p-type

Compare calculati with data

GERDA Physics Goal

Of course, we hope for a discovery !

Discovery Range - flat prior

