Physics Needs for the Forward Region

Klaus Mönig



### Introduction

Forward region detectors serve two purposes:

- Hermeticity: Increase acceptance down to lowest possible angles. Mainly relevant for vetoing  $\gamma\gamma$  induced  $e^+e^- \rightarrow e^+e^-X$  events. Beamcal and Lumical are important
- Precision luminosity measurement: Bhabha scattering in the forward region. Extremely good control of systematics required. Only Lumical is relevant.



# Luminosity determination

Luminosity precision is determined by statistics of interesting processes

- $e^+e^- \rightarrow W^+W^-$ : ~ 10 pb at  $\sqrt{s} = 340$  GeV scaling with 1/s  $\rightarrow \mathcal{O}(10^6)$  events  $\rightarrow need \ 10^{-3}$  precision
- $e^+e^- \rightarrow f\bar{f}: \sim 5 \text{ pb at } \sqrt{s} = 340 \text{ GeV scaling with 1/s}$  $\rightarrow \mathcal{O}(10^6) \text{ events} \rightarrow \text{need } 10^{-3} \text{ precision}$
- GigaZ: aim for  $10^9$  hadronic Z decays. Relevant physics quantities (except  $N_{\nu}$ ) need also leptonic decays (10% of hadronic decays) med  $10^{-4}$  precision

Reached at LEP:

- cross section of lumi-monitor > 60 nb (25mrad  $< \theta <$  60mrad)
- experimental error on  $\mathcal{L}$ :  $\Delta \mathcal{L} = 0.03\%$
- theoretical error on  $\mathcal{L}$ :  $\Delta \mathcal{L} = 0.05\%$

 $e^+e^- \rightarrow W^+W^-$ 

W-pair production from  $\nu$  t-channel and Z, $\gamma$  s-channel exchange



Cross section strongly forward peaked

However forward peak independent on anomalous couplings



Normalisation in TGC fits can be obtained internally

Luminosity measurement only interesting for anomalous  $e\nu W$  couplings

# $\underline{e^+e^-} \to f\overline{f}$

 $e^+e^- \rightarrow f\bar{f}$  is sensitive to physics at very high scales (compositness, Z', extra space dimensions)

Sensitivity is mainly via interference with Standard Model amplitude  $\twoheadrightarrow \propto 1/M^2$ 

All observables (cross section, left-right asymmetry, forward-backward asymmetry) are important

Systematic errors (e.g. luminosity) effect results significantly



Case A:

 $\begin{aligned} \Delta \mathcal{P} &= 1\% \\ \Delta \mathcal{L} &= 0.5\% \\ \Delta \varepsilon_l &= 0.5\% \\ \Delta \varepsilon_{had} &= 0.5\% \end{aligned}$  Case B:

 $\Delta \mathcal{P} = 0.5\%$  $\Delta \mathcal{L} = 0.2\%$  $\Delta \varepsilon_l = 0.1\%$  $\Delta \varepsilon_{had} = 0.1\%$ 

## GigaZ

 $GigaZ = 10^9 Z at \sqrt{s} \approx m_Z$ 

Main aim:  $\sin^2 \theta_{eff}^l$  determination  $\rightarrow$  no  $\mathcal{L}$  dependence

Important additional information from "lineshape" parameters  $\Gamma_{\rm Z},\,\sigma_0^{\rm had},\,R_l$ 

Interesting information is obtained from combination of these parameters:

$$\sigma_0^{\text{had}} = \frac{12\pi \Gamma_e \Gamma_{\text{had}}}{m_Z} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$$
$$R_l = \frac{\Gamma_{\text{had}}}{\Gamma_l}$$

 $\Rightarrow$  need all parameters with about the same accuracy

- $\Gamma_Z$ : difficult to estimate (beam energy, beamstrahlung, beamspread) but  $\Delta\Gamma_Z = 1 \text{ MeV} (\Delta\Gamma_Z/\Gamma_Z = 4 \cdot 10^{-4})$  seems realistic
- $R_l: \Delta R_l/R_l = 10^{-4}$  from lepton statistics

 $\rightarrow$  need lumi error (exp+theo)  $\Delta \mathcal{L}/\mathcal{L} \sim 2 \cdot 10^{-4}$ 

Gain of GigaZ:



# Hermeticity

Signal:  $e^+e^- \rightarrow X + p_{inv}$  with p(X) small and  $p_{inv}$  = momentum of invisible particles (e.g. LSP)

Background:  $e^+e^- \rightarrow e^+e^-Y$  with electrons lost in forward region

Maximum transverse momentum of  $Y \colon p_t(Y) < \sqrt{s} \theta_{veto}$ 

 $\Rightarrow$  signal-background separation depends on  $\theta_{veto}$ 

Example with  $\sqrt{s} = 500 \,\text{GeV}$ :

- no Beamcal:  $p_t(veto) = 10 \text{ GeV}$
- full Beamcal:  $p_t(veto) = 1.4 \,\text{GeV}$

# Cosmology favours regions with small mass difference (e.g. $m_{\tilde{\tau}} - m_{\chi_1^0}$ ):

(from Bambade et al., hep-ph/0406010)



Signal:  $e^+e^- \to \tilde{\tau}^+\tilde{\tau}^- \to \tau^+\tau^-\chi_1^0\chi_1^0$  with  $\chi_1^0$  invisible and  $p(\tau)$  small.



#### Situation before cuts:

Situation after  $p_t$  (and some other) cuts:



Excellent hermeticity allows separation of signal and background

### Conclusions

Forward region of TESLA detector is important:

- Luminosity needs to be known on the  $10^{-4}$  level
- Excellent hermeticity allows SUSY detection in region favoured by cosmology and invisible for LHC