
Compilation Consistency Checks

D. Pleiter

31 January 2007

The first section of this document specifies the system which allows at each
compilation step to add software specific information, to impose requests
on options used for a particular software, and to check the consistency of
information and requests at each stage of the compilation chain. The second
section describes the implementation by a perl module.

1 Specification

1.1 SW INFO

At each compilation step the involved software may insert information about themselves.
There is a special information field indicated with the keyword comment which is not
supposed to be used for checks and can be used to pass arbitrary user level information.

Note that it is recommended to only have the linker adding the prefix id-<id>:.

• Revision:
Syntax: [id-<id>:]<swname>:rev:<revision>

swname Name of software
revision One or more integers separated by ‘.’

• Options:
Syntax: [id-<id>:]<swname>:opt<optid>:<value>

swname Name of software
optid Option identifier
value Integer value

• User information:
Syntax: [id-<id>:]<ns>:comment:<string>

ns User defined namespace (must be non-empty)
string User defined string terminated by newline

1

1.2 SW REQ

At each compilation step the involved software may insert request for certain conditions
to be true. Each request may optionally be marked global or local. If neither of them
is specified, global is implicitly assumed. If a request is marked local and an <id> has
been defined, only those SW INFO will be considered where <id> matches.

• Revision:

Request the revision of a particular software to fulfill a particular condition, e.g. re-
quest a certain or more recent revision of this software.

Syntax: [{local[-<id>]|global}:]<swname>:rev:<relop>:<revision>
swname Name of software to be checked
relop Relational operator
revision One or more integers separated by ‘.’

• Option:

Impose requests on options used for a particular software, e.g. check for mutually
exclusive options.

Syntax: [{local[-<id>]|global}:]<swname>:opt<optid>:<relop>:<value>
swname Name of software to be checked
optid Option identifier
relop Relational operator
value Integer value

• Require:

Before starting to execute a particular software, require another software to have
been executed.
Syntax: [{local[-<id>]|global}:]<swname a>:requires:<swname b>

swname a Name of software executed after
swname b Name of software executed before

• Check:

Request a particular software to perform a particular check.

Syntax: [{local[-<id>]|global}:]<swname>:check:<checkid>[:arg...]
swname Name of software to perform check
checkid Identifier of check to be performed
arg Optional arguments for check

The following relational operators are defined: eq, ne, gt, ge, lt, le.

1.3 Linker behaviour

The linker will perform the following operations:

1. Select or generate a UUID <uuid> for each module

2

2. Foreach SW INFO that does not match the regular expression “∧id-” add prefix
“id-<uuid>”.

3. Foreach SW REQ that matches the regular expression “∧local:” replace this sub-
string by “local-<uuid>:”.

1.4 Matching rules

1. Any combination of SW INFO and SW REQ will only be considered if any of the
following rules apply:

a) The SW INFO did not contain an <id>.

b) The SW REQ did not contain a qualifier local and a corresponding <id>.

c) The <id> of the SW INFO and SW REQ match.

2. In case of requests on revision or options any combination of SW INFO and SW REQ
will only be considered if <sw name> match.

3. In case of requests of type require at least one SW INFO for <swname a> must exist.

1.5 Example

In sasm or masm files the information and request fields may be kept in pragmas:

PRAGMA_SW_INFO os1:rev:0.9
PRAGMA_SW_REQ npsk:opt+a:ne:0
PRAGMA_SW_REQ nose:rev:ge:1.62 nose:opt-os7:ne:0

PRAGMA_SW_INFO mpp:rev:1.127 mpp:opt-r:1
PRAGMA_SW_REQ nose:opt-r:ne:0

PRAGMA_SW_INFO npsk:rev:0.992.2 npsk:opt+a:0
PRAGMA_SW_REQ npsk:requires:sofan

In above example the check for the requested shaker option ‘+a’ and the check for
execution of sofan should fail. Additionally, several warnings should be issued as the
check for various nose options can not be performed.

In mem files the following syntax may be used:

!! SW_INFO: os1:rev:0.9
!! SW_REQ: npsk:opt+a:ne:0
!! SW_REQ: nose:rev:ge:1.62 nose:opt-os7:ne:0

The following example shows that in a linked module there may be conflicting “local”
requests:

3

!! SW_INFO: id-a:mpp:rev:1.140
!! SW_INFO: id-a:os1:rev:0.9
!! SW_REQ: local-a:npsk:opt+a:ne:0
!! SW_REQ: global:nose:rev:ge:1.62 global:nose:opt-os7:ne:0
!!
!! SW_INFO: id-a:npsk:rev:0.992.2 id-a:npsk:opt+a:1

!! SW_INFO: id-b:mpp:rev:1.140
!! SW_INFO: id-b:os1:rev:0.9
!! SW_REQ: local-b:npsk:opt+a:eq:0
!!
!! SW_INFO: id-b:npsk:rev:0.992.2 id-b:npsk:opt+a:0

!! SW_INFO: nose:rev:1.63 nose:opt-os7:1

2 Implementation

2.1 Perl library

The perl library provides the following functions:

parseLine() Parse line provided on input for PRAGMA SW INFO and PRAGMA SW REQ
and push content to arrays INFO and REQ.

verify() Verify checks: Evaluate pieces of information and requests stored in the hash
arrays INFO and REQ. Returns a list of error and warn messages.

verifyReq() Parse line provided on input for PRAGMA SW REQ and verify software
request using the information stored in INFO. Hash array REQ remains unchanged.

2.2 Executable

swcheck [-q] file{.sasm|.masm|.mem}
Program checks the consistency of all SW INFO and SW REQ entries in the input file

and prints a list of errors and warnings if any. Output is surpressed when the option -q
is used. The exit status may be used to obtain the number of detected errors.

4

