
ROOT Logic for the Global Control
of apeNEXT

June 20, 2006

H. Simma

1 Introduction

Like all APE100 and APEmille, also apeNEXT has a hierarchical tree net-
work of interrupt and control signals for the global control of the machine.
In the following these signals1 will simply be called “root signals” and the
devices which handle them “root logic”.

The hierarchy levels of the apeNEXT root logic correspond to the different
sub-systems of the machine:

• Top (N Crates = 4N × 8 × 8 Nodes) or2

• Rack (2 Crates = 8 × 8 × 8 Nodes)

• Crate (4 Units = 4 × 8 × 8 Nodes)

• Unit (4 Boards = 4 × 2 × 8 Nodes)

• Board (2 Halfboards = 4 × 2 × 2 Nodes)

• Halfboard (8 Nodes = 2 × 2 × 2 Nodes = “Cube”)

• Node

The root signals interconnect the different root levels in a tree topology (see
Fig. 1) and allow to transfer information or commands from a lower to a
higher level (“upward”) or vice versa (“downward”). The purpose of the
root logic is to

• collect and reduce the upward signals/commands

• generate and distribute the downward signals/commands

1We will not strictly distinguish between the “signals” at the electrical level and the

logical “commands” which are handled by the root logic through such signals
2The Rack-level is skipped if a Top-level with N > 2 is present

1

M M A A A A A A

A A MLevel n+1

Level n−1

Level n

Figure 1: Example of the interconnection between three different root lev-
els: At the lowest level, two sub-systems are closed and their upward signals
are masked on the next higher level. The masking of incoming upward sig-
nals is indicated by an “M”. The highest level is closed and the additional
sub-system(s) of this level, which are not shown explicitly in the figure, are
masked.

The signals generated after the reduction of the incoming upward signals are
always propagated to the next higher root level.

At each root level the incoming upward signals from the individual sub-
systems which correspond to the next lower level can be masked by configu-
ration registers (“partition registers”).

For the generation and propagation of downward signals each root level can
be configured as “closed” or “open”. In closed mode, the downward signals
are generated according to the result of the reduction of the incoming upward
signals (which is always propagated upward), while all incoming downward
signals are ignored. Therefore, this level of the root logic operates as the top
level for all its sub-systems.

In open mode the root logic simply forwards the incoming downward signals

2

to the next lower level (which in turn might ingore them if it is closed itself).

Upward commands are:

• Kill (KILL)

• All (ALL)

• Trigger (TRIG)

• True local condition on all lower levels/nodes (TRUE)

• False local condition on any lower level/node (FALSE)

These commands are encoded and decoded in such a way that the commands
in the above list have decreasing precedence from the first to the last.

The KILL command is issued whenever an (unmasked) exception occurs on
a node (identified at the lowest, i.e. halfboard, level of the root logic by the
STATUS 1 line from a nodes being high).

The ALL command indicates to the next higher root level that all nodes of
the sub-sustem are in I2C-mode (identified at the lowest level of the root
logic by the STATUS 2 line from all nodes being high).

At the lowest level of the root logic, the generation of the upward TRIG
command may be configured in two different ways: either if one (or more) of
the nodes is in I2C-mode (default configuration) or if any of the nodes has
executed the TXTRIGGER instruction3 . In the first case, an upward TRIG
signal at any level of the root logic indicates that any node of the correspond-
ing sub-system (but not all of them) is in I2C-mode.

The two commands TRUE and FALSE correspond to the boolean AND
of the local condition values on each node. Note that the upward (and
subsequent downward) propagation of these two commands implies also a
synchronisation of the nodes: the root logic first waits until each lower level
is transmitting its condition value and only then evaluates and propagates
the boolean AND over all the received condition values4.

3Currently in the configuration registers of PALREG the bit to selected between the two

sources of the TRIG signal is not yet implemented, and an upward TRIG signal is only

generated if any of the nodes is in I2C-mode.
4The root logic actually works with a condition strobe CSTR and the condition value

CVAL. Therefore, transmission of just the two local condition commands TRUE and

FALSE requires at least two upward signal wires.

3

Downward commands are:

• Reset (RST)

• Kill (KILL)

• Trigger (TRIG)

• True global condition (TRUE)

• False global condition (FALSE)

Also these commands are encoded and decoded in such a way that the com-
mands in the above list have decreasing precedence from the first to the
last.

A downward KILL command is generated whenever an upward KILL com-
mand due to an exception on some node(s) reaches the highest relevant (i.e.
closed) level of the root tree. In addition, a downward KILL command can
be generated by writing the value 1 into a corresponding bit of the command
registers (see RCREG, U*CREG, CCREG and TCREG below).

The generation of the downward TRIG command depends on the configu-
ration of the root logic: It is either generated by writing the value 1 into a
corresponding bit of the command registers (see U*CREG, CCREG and TCREG

below) or upon receiving an upward TRIG command from a lower root level.
The selection between these two behaviours can be configured (see U*PREG,
CPREG and TPREG below).

4

2 Hardware Implementation

2.1 Encoding of upward commands

Command Origin Reduction Signals
0 1 2

KILL Node any 1 1 0
ALL Board all 0 0 1
TRIG Node any 1 0 1
TRUE Node all 0 1 1
FALSE Node all 0 1 0
NOP — — 0 0 0

The duration of the upwards commands depends on their generation by all
or any of the nodes. In fact, the nodes continue to generate the upward
command until they receive a corresponding downward command from the
root logic (see section 7.3 for further details).

2.2 Encoding of downward commands

Command Origin Duration Signals
IFS IFD1 IFD2

RST Root 8 TRCLK dedicated wire
KILL Node any(N) 0 1 1

Root 8 TRCLK

TRIG Node any(N) 0 1 0
Root 8 TRCLK

TRUE Node/Root all(N) 0 0 0
FALSE Node/Root all(N) 0 0 1
NOP — — 1 0 0

The third column in the table specifies the duration of the command. The
commands generated by the root logic itself have a duration of 8 clock cycles
TRCLK of the root logic. This duration is necessary to guarantee that the
command is longer than

5

• the stability period (3 cycles of the clock RCLK of the root logic) re-
quirement for the detection of downward commands in the lowest root
level (see section ?? for further details)

• one period of the I
2
C clock (to allow safe passing of signals into the

domain of the I2C clock)

2.3 Firmware of the root logic

The logic for Halfboard- and Board-level is contained in the FPGA (U21,
also called PALREG) on each Processing Board (“BP”) and will be called
“ROOT0” in the following.

The logic for Unit- and Crate-level is contained in FPGA1 (U14) on the
Root Board (“RB”) and will be called “ROOT1”in the following. ROOT1 is
connected with ROOT0 via the backplane.

The logic for Rack- and Top-level is in FPGA2 (U16) on the RB and will be
called “ROOT2” in the following. ROOT2 can be connected with ROOT1
(of the same or of a different RB) via a pair of cables or by an internal bus
(if on the same RB).

2.4 Configuration switches

The front-panel of the RB has two 4-bit DIP switches. A switch being in left
position corresponds to the value 0. The switches are used as follows

6

Upper Switch
Nr. Color VHDL Description
1 brown RT ADD RB Address
2 red RT ADD RB Address
3 orange RT ADD RB Address
4 yellow RT ADD RB Address

Lower Switch
1 brown INT CLK EN SW Clock Selection
2 red SW INTERNAL Interconnect Selection
3 orange — —
4 yellow SW FIXJ10 Signal swapping for J10

The RB Address has no relevance for the bahaviour of the root logic, but can
be used to allow the SW to identify e.g. the Top-level RB in a multi-crate
configuration.

The switch for the Clock Selection determines whether the clock of the RB
(which in turn is distributed over the backplane to all boards) is taken from
an internal or external source:

• When INT CLK EN is 0, the “Clk In” connector on the front-panel must
be connected to an external PECL clock (e.g. from connector “Clk
Out” of an other RB)

• When INT CLK EN is 1, an “internal” clock source is used. Depending on
the setting of the hardware jumper JPR888 this is the internal quartz
oscillater (jumper setting 1–2) or an external TTL clock generator
connected to “Tst Clk” on the front-panel.

The switch for the Interconnect Selection determines whether ROOT1 is in-
ternally connected to the ROOT2 (on the same RB) by the interconnect bus
(SE INTERNAL = 1), or whether the upward and downward signals of ROOT1
to and from higher root levels are routed to the connector pair “SRt” on the
front-panel (SE INTERNAL = 0)

2.5 Reset Signals

The following reset sources have to be distinguished

7

(RBot) Push-botton or powerup circuit of the RB

(RCmd) Command registers of the RB

(RI2C) I2C-interface of the RB

(BBot) Push-botton or powerup circuit of the processing board (PB)

(BBP) Reset signal from the RB, distributed by the backplane to all PBs

(BI2C) I2C-interface of the processing board

(BC) Command registers of processong board

On the other hand we distinguish the following (disjunct) reset domains
which are reset by corresponding signals

• ROOT2 internal registers of the root logic (in RCL domain)

• ROOT2 configuration registers (in I
2
C address space and SCL domain)

• ROOT1 internal registers of the root logic (in RCL domain)

• ROOT1 configuration registers (in I2C address space and SCL domain)

• ROOT0 internal registers of the root logic (in RCL domain)

• ROOT0 and PAL configuration registers (in I2C address space and
SCL domain)

• xxx

3 Configuration Registers

All configuration registers to configure the various levels of the root logic are
(only) accessible via I2C.

These configuration registers and all other I2C-registers can only be reset by
the reset command over the I2C channel (generated by writing 0x00400000
to the HIB command register), but they are not reset by a RST command
issued at any level of the root logic.

The only exception from this rule is the NCREG register of the nodes (because
at the node-level the RST command from the root logic performs a power-

8

up reset of the chip (which resets all internal registers, including the I2C

interface and all its registers, as well as the memory interface5).

The philosophy of not resetting the I
2
C registers by the RST command from

the root logic was adopted to avoid screwing up of the I2C channels. This
might happen because the information on the last value written to IDREG,
which the HIB internally keeps to optimise repeated accesses to the same
device, may becomes inconsistent. The natural cure of this inconsistency (at
least when the reset is generated by SW) would be that the operating system
enforces the writing of the IDREG in the first I2C access after a reset through
the root logic. Unfortunately, the HIB currently does not correctly support
the command flag to force writing of the IDREG before an I

2
C access (rather

the HIB completely blocks the I2C channel if this flag is activated!).

On the other hand, we have found situations (e.g. after a temporary change
of the SCL frequency on the HIB) that the I

2
C interface on the PB may

become blocked in such a way that it does not receive or execute any more a
reset command issued via the I2C channel. Therefore, it might be desirable
to change the above reset handling such that a RST from the root logic also
resets the I2C registers (to avoid the necessity to reset them by pushing the
reset bottins on each individual PB of the blocked channel!).

3.1 Node-level

At the node-level there is only the 1-bit configuration register NCREG (at I2C

address 0x3) which closees the root signals of each individual node when set
to 1.

3.2 Board-level (ROOT0)

At board-level the root logic in ROOT0 is configured only through the register
RCREG (currently at I2C address 0x2). The bits 16:31 represent the mask for
the individual nodes. The bits 32:34 close the ROOT0 logic for half-board 0

5Therefore, after any RST command from the root logic, the startup sequence of the

memory interface has to be performed by writing the command 0x5 into the I2C register

CREG of the nodes.

9

and 1 and for the full board, respectively, when set to 1. By setting bit 36
to 1 a RST command is generated for all nodes of the board (and bit 37 is
raised when the command is completed).

As the layout of the configuration register(s) for the ROOT0 logic might
change in the future, the relevant reference for detailed information is the
file $NXTPROJECT/doc/hubert/I2CREGS.

3.3 Unit- and Crate-level (ROOT1)

For further details we refer to the file $NXTPROJECT/doc/hubert/ROOTREGS

3.4 Top-level (ROOT2)

For further details we refer to the file $NXTPROJECT/doc/hubert/ROOTREGS

4 System Configuration

To avoid an unnecessary increase of the latency of the root logic, no Rack-
level logic is used in systems with more than one rack. This is achieved by
direct cable connections from all (but one) Crate-level RBs to a unique Top-
level RB (which we always assume here to be the RB of Crate 0). We call
this configuration in the following “Multi-Crate Configuration”.

In addition, it may become desirable that the RBs can be configured and
connected in a “Multi-Rack Configuration” which allows to partition the
system as a Top-level system and/or several Rack-level systems without re-
cabling. Currently this possibility is not yet implemented.

Each RB must have ROOT1 and ROOT2 firmware loaded (otherwise the
I2C signals are not propagated to connector and the entire I2C channel is
inaccessible). This constraint should be removed in a future release of the
firmware by activating the I2C signals to ROOT2 only if a corresponding
configuration switch is set (e.g. by using a separate switch or coupled to
INT CLK EN SW).

10

In the following description of the cabling and hardware configuration of the
root logic we refer to the layout and labling of the front panel of the RB as
shown in Figure 2.

rack 0 rack 1

Figure 2: Cabling of the RBs of 4 crates in Multi-Crate configuration with
the master RB (white) in the upper crate of rack 0. The RBs of all other
crates are slaves (grey), i.e. sub-systems of the ROOT2 in the master RB.
Dotted lines show the cables of the daisy chain for the clock distribution.
Solid lines represent pairs of CAT5 cables for the root signals. The dash-
dotted line is the optional cable for the external connection between ROOT1
and ROOT2 of the master RB.

11

4

2
1

3

4

2
1

3

S1

Clk In

Status

S2

Bank A

SRt

Bank B

C8

C15

C0

Top

C1

C7

...
...

C9

Clk Out

Tst Clk

HIB Link

Figure 3: Front panel of the RB with the positions and labeling of connectors,
configuration switches, etc.

4.1 Clock distribution

Master: External TTL clock input (INT CLK EN = 1, i.e. brown switch of
lower group in right position)

Master: PECL output on JC15 (lowest of the three clock connectors)

Slaves: External PECL clock input (INT CLK EN = 0, i.e. brown switch of
lower group in left position) to JC1 (=external clock cable into upper-most
of the three clock connectors)

12

4.2 Cabling of root signals in Multi-Crate configura-
tion

The RB of each crate in a Multi-Crate configuration must be connected to
the RB of the “master” crate by a pair of CAT5 cables.

The connection between the top-level ROOT2 and the ROOT1 of the master
crate itself (which is on the same RB) can be done by a pair of cables analog
to the ones used for the other crates, or by the internal interconnect bus (by
setting a configuration switch, see 4.3 below).

4.3 Switch setting in Multi-Crate configuration

4.3.1 Upper group S1

The switches of the upper group S1 are irrelevant for the functionality of the
ROOT hardware. They may be (but currently are not) used by the OS, e.g.
to identify or check the hardware ID of the crates.

4.3.2 Lower group S2

The first (brown) switch of the lower group S2 selects the clock input (see
also 4.1):

• Left position (off) requires an external (differential) clock signal to be
feed to the connector “Clk In”.

• Right position (on) uses (depending on the settings of jumper JPR888)
the internal clock generator (if jumper setting is 1-2) or an exteral TTL
clock signal to be feed to the connector “Tst Clk” (if jumper setting is
2-3)

The second (red) switch of the lower group S2 selects whether the cable pair
(if present) or the internal interconnect bus is to be used to connect ROOT2
and ROOT1 on the master RB (see 4.2).

• Left position (off) requires and uses the external cable pair between

13

(usually) the upper-most connectors of Bank A and the connectors
SRt of the same RB.

• Right position (on) uses the internal interconnect bus.

In multi-crate configuration, this setting can only be used on the master
RB (but not on a slave RB which always must use the external cables
to communicate with ROOT2)!

The third (orange) switch of the lower group S2 is currently unused.

The last (yellow) switch of the lower group S2 selects the negation of the up-
ward signals from ROOT1 to pin B05/B06 at J10 (SRt). This selection is
supported starting with firmware version 3 (see bits 15 downto 8 of FSREG).
To allow any connection of ROOT1 to ROOT2 by external cables, this switch
must be in

• Left position (off) for RBs starting from revision C (where the connec-
tions to pin B05/B06 are fixed and no swapping is needed)

• Right position (on) for old RBs with revision A (where the connec-
tions to pin B05/B06 are incorrect and explicit swapping by ROOT1
is needed)

4.4 Cabling and switch settings in Multi-Rack config-

uration

To be defined (not yet implemented)

5 Firmware Revisions

The type, version, and revision of the actual firmware can checked by reading
the corresponding Firmware Status Regiser (FSREG)

ROOT0 (in PALREG)

• Revision 05: Compiled with out-of-date6 sources of ROOT0

6with incorrect generation of downward TRIGon Halfboard 0: TDOWN H(0) <= ’0’

when ALL S2 H(1) = ’0’

14

• Revision 05.1 (26.4.2005): Re-compiled with up-to-date sources

The revision number read from FSREG of PALREG is not yet following a clear
and documented logic ... ask Sergio.

ROOT1 (Type = 01)

• Version 02 Revision 00: First experimental version

• Version 02 Revision 01 (4.5.2005): INT CLK EN connected to INT CLK EN SW

(instead of fixed value 1)

• Version 02 Revision 02 (10.6.2005): Fixed incorrect address for RADCREG

• Version 03 Revision 00 (22.5.2006): Added support to optionally swap
signals B05/B06 to J10 by configuration switch (instead of fixed swap-
ping) and changed reset value of RREQ to 0

ROOT2 (Type = 02)

• Version 02 Revision 00: First experimental version

• Version 02 Revision 01 (4.5.2005): Fixed bug in handling of TSEL

• Version 03 Revision 00 (22.5.2006): Added support to optionally swap
signals B05/B06 to J10 by configuration switch (insstead of fixed swap-
ping)

The version number of ROOT1 and ROOT2 should always be equal (i.e.
it is supposed to be incremented whenever the singnalling between the two
devices changes).

6 Missing Features and Improvements

PALREG and HIB:

• Fix of command flag to enforce writing of IDREG (HIB)

• Improved I
2
C-protocol (uni-directional use of reset wire) (PALREG+HIB)

• Implement parity check in I2C-protocol (PALREG+HIB)

• Simplified implementation of HSM (PALREG)

15

• New LED layout (PALREG)

• Fix format of FSREG (PALREG)

• Replace baroque test-logic for tests with mini-backplane by a config-
uration register which simply selects the encoding of upward signals
(PALREG)

• Implementation of missing configurability (ROOT0)

• Implement KILL request by RCREG (ROOT0)

• Implement TSEL (ROOT0)

ROOT1:

• Support absence of ROOT2 by configuration switch

• Drop INT CLK EN output to recover INTERC[10] on pin 55

• Fix reset of RDONE by botton reset of RB (need asyncronous reset in
pulse.vhd?)

• Check/fix ADC

• Revise LED layout (green = not any(I2C)?)

ROOT2:

• Implement support for Multi-Rack configuration

• ...

See also file root8/2do.

7 Implementation Details

7.1 I
2
C interface

Currently the RB uses a simplified I2C interface, which does not

• take into account only the SDA line of the I2C signal (but not the second
wire originally foreseen for reset) when determining the start of an I2C

transaction

16

• perform a dummy cycle of the FSM when a device is accessed, which
is not on the RB

• take into account the 4 RT ADD switches to assign individual addresses
to different RBs

Therefore, currently each RB must be on a individual I2C channel.

7.2 Names used in VHDL sources and schematics

The following table shows the relation between the signal and component
names indicated on the front panal of the RB and the actual names used in
the schematics and VHDL sources.

Front Panel VHDL/Schematics
Connectors
Clk In JC1 , CLK IN

Clk Out JC15, CLK OUT

Tst Clk JC13, CLK TEST

SRt J10
Bank A J11 . . . J14
Bank B J15 . . . J18

7.3 Signal handshake between nodes and root logic

The node generates and decodes the upward and downward root signals
according to the following table

Command IFS IFD2 IFD1

hline KILL 0 1 1
TRIG 0 0 1
TRUE 0 0 0
FALSE 0 1 0
NOP 1 X X

17

Upward commands:

Due to an unfortunate feature of the WHERE on the node, the generation of the
upward KILL command is not guaranteed in certain situations (e.g. while
the node transmits a TRUE or FALSE command, i.e. during a “global if”).

Therefore, the ROOT0 logic ignores upward KILL commands from the node
via the root signals (i.e. IFS, IFD2, IFD1) from the node and instead generates
upward KILL commands depending on the value of the STATUS 1 pin of the
node (1 in case of exceptions, 0 otherwise).

Moreover, by default the ROOT0 logic ignores upward TRIG commands
from the node and instead generates upward TRIG and ALL commands
depending on the values of the STATUS 2 pin of the node (1 in case of I2C-
mode, 0 otherwise).

Downward commands:

The ROOT0 logic generates the downward commands KILL TRIG TRUE
and FALSE by activating the 3 root signals (i.e. IFS, IFD2, IFD1) towards
the nodes. The signals towards the nodes are activated only when the in-
coming downward commands are stable for a certain number of Nstab clock
cycles (see gfilter.vhd).

The nodes respond to the receipt of a downward command by deactivating
the generation of the corresponding upward command (if any). This response
arrives at the ROOT0 logic after the upward and downward propagation time
through the entire root tree. To avoid that this propagation delay causes a
large scheduling constraint on the distance between microcode of subsequent
global IF operations (which would also depend on the depths of the root-
tree), the true commands TRUE and FALSE are generated by the ROOT0
logic only for a fixed number of cycles. Any further incoming downward
TRUE or FALSE commands are ignored by the ROOT0 logic (i.e. not
propagated downward to the nodes) until such commands are absent for at
least Nstab clock cycles (see glock.vhd), i.e. until the response of the node
propagated through the entire root tree in a stable way. In this way, the
minimal microcode distance between subsequent global IF operations is only
limited to the number of processor clock cycles which correslonds to a time

18

little more7 than Nstab × TRCLK

The RST command is performed by activating the dedicated wire RESET 7512

which is directly connected to the reset pin of all nodes of the PB.

7because of sampling ambiguities by signals passing from the processor clock domain

to the clock domain of the root logic and vice versa

19

