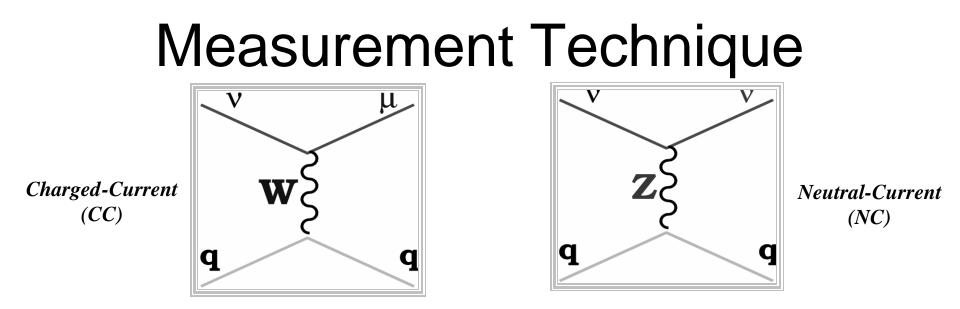
The NuTeV Anomaly: A hint of New Physics? or Train Wreck of the Mundane?

Kevin McFarland

University of Rochester

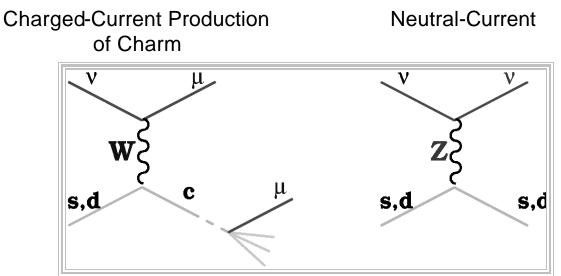

DESY-Zeuthen Workshop on Precision EW Measurements 28 February 2003

NuTeV Collaboration

G. P. Zeller⁵, T. Adams⁴, A. Alton⁴, S. Avvakumov⁸, L. de Barbaro⁵, P. de Barbaro⁸, R. H. Bernstein³, A. Bodek⁸, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁸, L. Bugel³, J. Conrad², R. B. Drucker⁶, B. T. Fleming², R. Frey⁶, J.A. Formaggio², J. Goldman⁴, M. Goncharov⁴, D. A. Harris⁸, R. A. Johnson¹, J. H. Kim², S. Koutsoliotas², M. J. Lamm³, W. Marsh³, D. Mason⁶, J. McDonald⁷, K. S. McFarland^{8,3}, C. McNulty², D. Naples⁷, P. Nienaber³, A. Romosan², W. K. Sakumoto⁸, H. Schellman⁵, M. H. Shaevitz², P. Spentzouris², E. G. Stern², N. Suwonjandee¹, M. Tzanov⁷, M. Vakili¹, A. Vaitaitis², U. K. Yang⁸, J. Yu³, and F. D. 7immerman²

Cincinnati¹, Columbia², Fermilab³, Kansas State⁴, Northwestern⁵, Oregon⁶, Pittsburgh⁷, Rochester⁸

For an isoscalar target composed of u,d quarks:

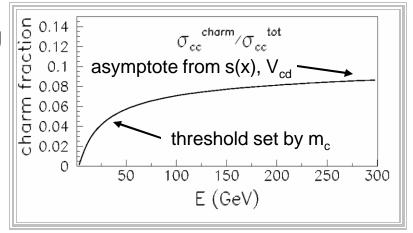

Llewellyn Smith Relation:

$$R^{n(\bar{n})} = \frac{\boldsymbol{S}_{NC}^{n(\bar{n})}}{\boldsymbol{S}_{CC}^{n(\bar{n})}} = \boldsymbol{r}^{2} \left(\frac{1}{2} - \sin^{2} \boldsymbol{q}_{W} + \frac{5}{9} \sin^{4} \boldsymbol{q}_{W} (1 + \frac{\boldsymbol{S}_{CC}^{\bar{n}(n)}}{\boldsymbol{S}_{CC}^{n(\bar{n})}}) \right) = g_{L}^{2} + \frac{\boldsymbol{S}_{CC}^{\bar{n}(n)}}{\boldsymbol{S}_{CC}^{n(\bar{n})}} g_{R}^{2}$$

NC/CC ratio easiest to measure experimentally but ...

- Many SF dependencies and systematic uncertainties cancel, BUT
- Must correct for up-down quark difference in target, EW radiative corrections, heavy quark effects, non-QPM parts of the cross-section, etc.
 - Here is where QCD and QED enter (constrained by data where available)

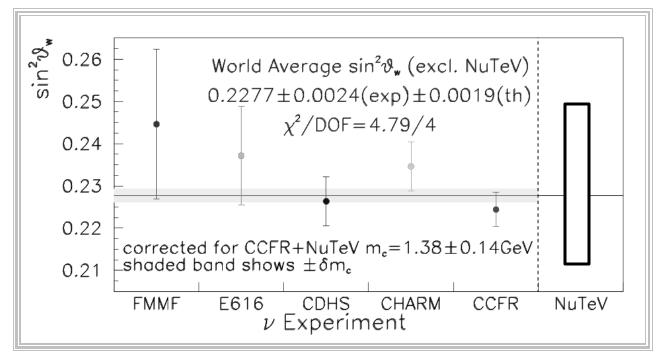
Charm Mass Effects



CC is suppressed due to final state c-quark

- \Rightarrow Need to know s-quark sea and m_c
- Modeled with leading-order slow-rescaling

$$x = \frac{Q^2}{2Mn} \rightarrow \mathbf{x} = \frac{\left(Q^2 + m_c^2\right)}{2Mn}$$


 Measured by NuTeV/CCFR using dimuon events (vN → µ cX → µµX) (NuTeV+CCFR: M. Goncharov et al., Phys. Rev. D64: 112006,2001 and D. Mason presentation at ICHEP '02. CCFR: A.O. Bazarko et al., Z.Phys.C65:189-198,1995.)
 What's wrong with NuTeV?

Before NuTeV...

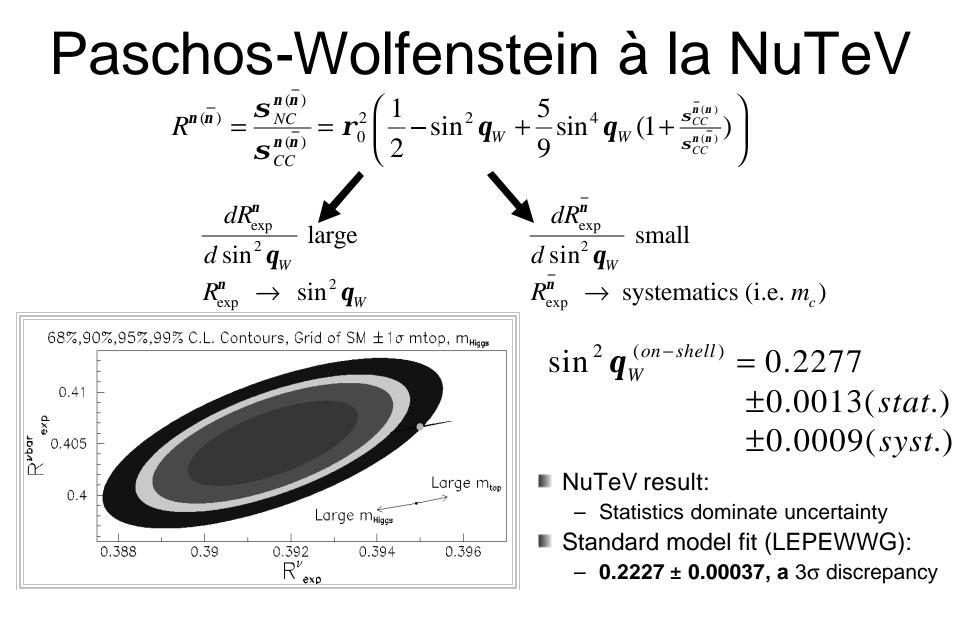
■ vN experiments had hit a brick wall in precision ⇒ Due to systematic uncertainties (i.e. m_c ) $\sin^2 q_W^{on-shell} = 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$

$$\Rightarrow M_W = 80.14 \pm 0.19 \ GeV$$

(All experiments corrected to NuTeV/CCFR m_c and to large $M_{top} > M_W$) What's wrong with NuTeV? K. McFarland, Rochester

NuTeV's Technique

Cross section differences remove sea quark contributions \Rightarrow Reduce uncertainties from charm production and sea

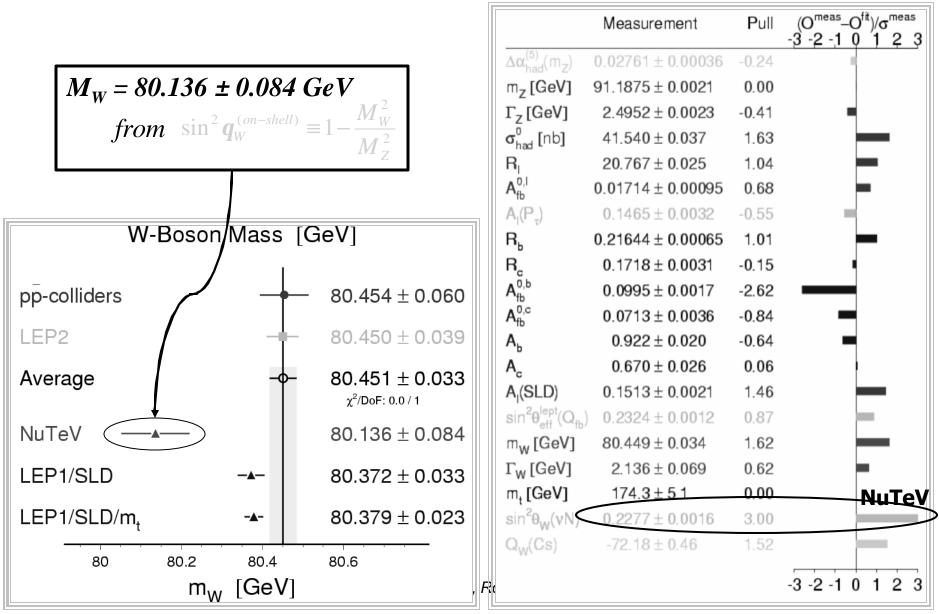

> Paschos - Wolfenstein Relation $R^{-} = \frac{\boldsymbol{s}_{NC}^{\boldsymbol{n}} - \boldsymbol{s}_{NC}^{\boldsymbol{n}}}{\boldsymbol{s}_{CC}^{\boldsymbol{n}} - \boldsymbol{s}_{CC}^{\boldsymbol{n}}} = \boldsymbol{r}^{2} \left(\frac{1}{2} - \sin^{2} \boldsymbol{q}_{W} \right) = g_{L}^{2} - g_{R}^{2}$

$$g_{L,R}^2 = u_{L,R}^2 + d_{L,R}^2$$

6

- $\boldsymbol{s}(\boldsymbol{n}_{m}d_{sea}) \boldsymbol{s}(\boldsymbol{n}_{m}d_{sea}) = 0 \implies \text{Only } d_{valence} \text{ contribute}$ $\boldsymbol{s}(\boldsymbol{n}_{\boldsymbol{m}}\boldsymbol{u}_{sea}) - \boldsymbol{s}(\boldsymbol{n}_{\boldsymbol{m}}\boldsymbol{u}_{sea}) = 0 \implies \text{Only } \boldsymbol{u}_{valence} \text{ contribute}$ $s(n_m s_{sea}) - s(\overline{n_m s_{sea}}) = 0 \implies \text{No strange-sea contribution} (Assuming xs(x) = xs(x))$
- \blacksquare R^- manifestly insensitive to sea quarks
 - Charm and strange sea error negligible
 - Charm production uncertainty small
 - \blacksquare d_V quarks only: Cabbibo suppressed and at high-x
- But R^- requires separate v and \overline{v} beams
 - ⇒ NuTeV SSQT (Sign-selected Quad Train) beamline

- Realized v in v mode 3×10^{-4} , v in \overline{v} mode 4×10^{-3} , 1.6% v_e \overline{v}_{e} What's wrong with NuTeV?



Uncertainties in Measurement

 sin²q_w error statistically dominated (R⁻ technique)
 Rⁿ uncertainty dominated by theory model

SOURCE OF UNCERTAINTY	$\delta \sin^2 \theta_W$	$\delta R^{\nu}_{\rm exp}$	$\delta R_{\rm exp}^{\overline{\nu}}$
Data Statistics	0.00135	0.00069	0.00159
Monte Carlo Statistics	0.00010	0.00006	0.00010
TOTAL STATISTICS	0.00135	0.00069	0.00159
$ u_e, \overline{ u}_e$ Flux	0.00039	0.00025	0.00044
Interaction Vertex	0.00030	0.00022	0.00017
Shower Length Model	0.00027	0.00021	0.00020
Counter Efficiency, Noise, Size	0.00023	0.00014	0.00006
Energy Measurement	0.00018	0.00015	0.00024
TOTAL EXPERIMENTAL	0.00063	0.00044	0.00057
Charm Production, $s(x)$	0.00047	0.00089	0.00184
R_L	0.00032	0.00045	0.00101
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	0.00007	0.00026
Higher Twist	0.00014	0.00012	0.00013
Radiative Corrections	0.00011	0.00005	0.00006
Charm Sea	0.00010	0.00005	0.00004
Non-Isoscalar Target	0.00005	0.00004	0.00004
TOTAL MODEL	0.00064	0.00101	0.00212
TOTAL UNCERTAINTY	0.00162	0.00130	0.00272

Compared to Other Measurements

So what has NuTeV found?

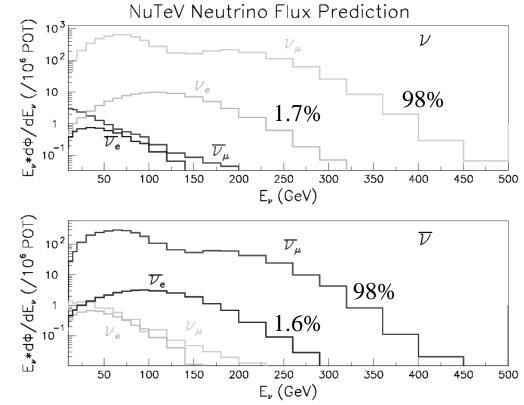
The cause of NuTeV's anomaly is highly unclear

- Beyond SM effects explaining NuTeV are strained
 - It's not SUSY loops or RPV SUSY
 - Hard to fit with leptoquarks
 - "Singular" Z' is possible
 - Heavy-light v + more miracles

S. Davidson et al. hep-ph/0112302 W. Loinaz et al, hep-ph/0210193 A. Kurlov et al, hep-ph/0301208

- So we turn to mundane explanations
 - I'll argue none of these are outstanding candidates either
- c.f. (g-2)_μ. "Everyone knows" it is SUSY but result is theoretically shaky.
 - Opposite problem: too many explanations!

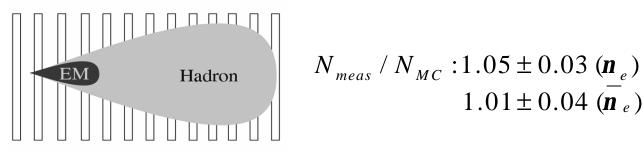
Experimental Concerns


- 1. Electron Neutrino Background
- 2. Why no others are evident

Electron Neutrino Background

- Approximately 5% of NC candidates are v_e CC events (It would take a 20% overestimate of v_e to move NuTeV to SM)
 - Main ν_{e} source is K $^{\!\pm}\,$ decay (93% / 70% of total in ν / $\overline{\nu}$ beams)
 - Others include K_L 's (4%/18%) and Charm (2%/9%)
 - Main uncertainty is K[±]_{e3} branching ratio (known to 1.4%) !
 - Unless BNL-E865 is correct. They claim K[±]_{e3} BR is 6% higher than PDG, fixing V_{us} problem but exacerbating NuTeV

Also have direct v_e measurement.


What's wrong with NuTeV?

K. McFarland, Rochester

Direct Measurments of v_e Flux

- 1. v_{μ}^{CC} (wrong-sign) events in anti-neutrino beam constrain charm and K_L production
- 2. Shower shape analysis can statistically pick out v events ($E_v > 80$ GeV)
 - Most precise at highest energies
 - Good agreement in peak flux region (80< E_v <180 GeV)



- Poor agreement with simulation on high energy tail (expected from inability to measure high E v_{μ}^{CC} , smearing)
 - Remove events from analysis with $E_v > 180 \text{ GeV}$. Concern?

Why We (NuTeV) Believe the Experimental Analysis: "Stability Tests"

- Verify systematic uncertainties with data to Monte Carlo comparisons as a function of exp. variables.
- Longitudinal Vertex: checks detector uniformity

Note: Shift from zero is *because* NuTeV result differs from Standard Model

Stability Tests (cont'd)

Yellow band is stat error

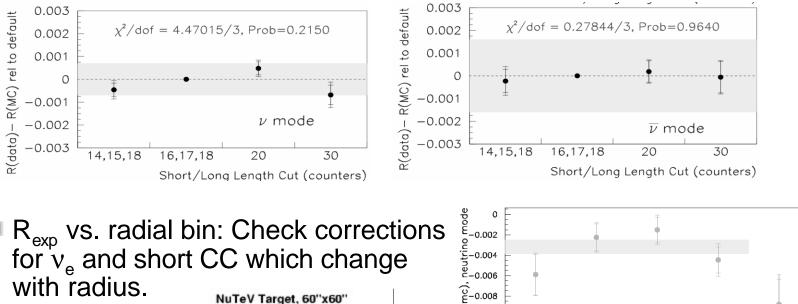
 χ^2 /dof = 4.01552/3 (Prob 0.2598), slope significance is 0.23 σ

20 - 30

 χ^2 /dof = 1.18213/3 (Prob 0.7573), slope significance is 1.09 σ

20 - 30

30-40


30 - 40

40-50

40-50

R_{exp} vs. length cut: Check NC \leftrightarrow CC separation syst.

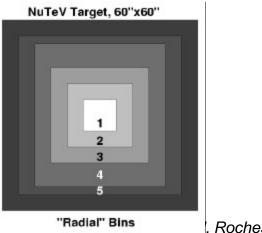
- "16,17,18" L_{cut} is default: tighten \leftrightarrow loosen selection

-0.01 -0.012

80.0075 0.005 0.0025

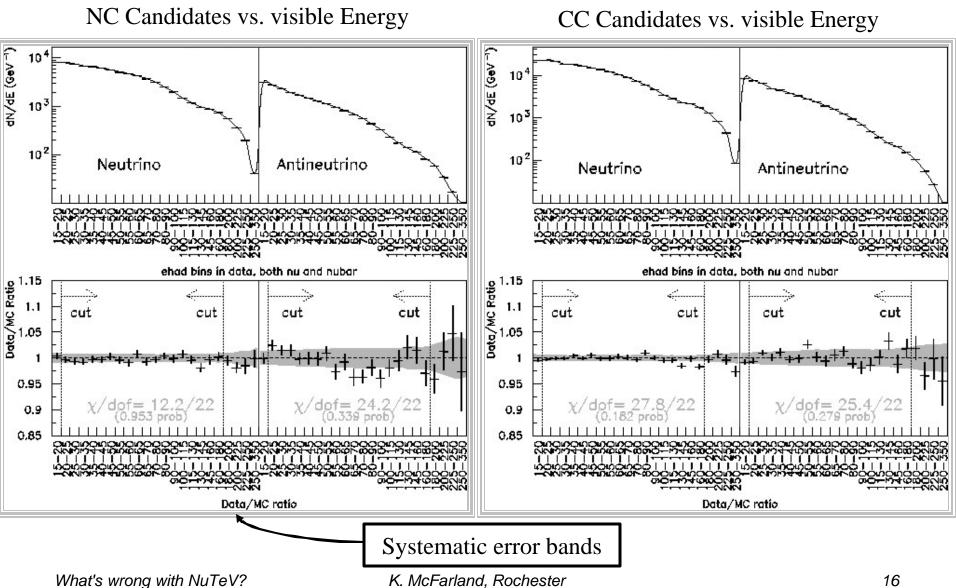
0.0025

ģ−0.015


B

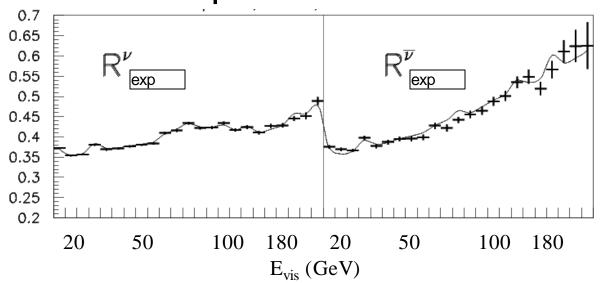
0-10

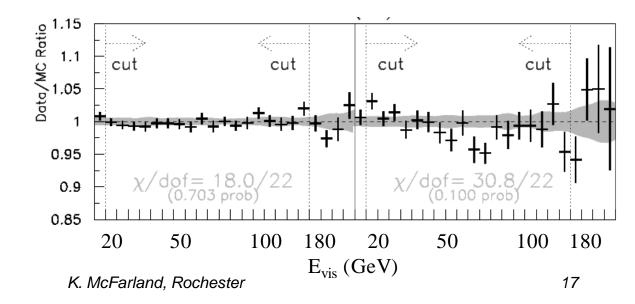
0 - 10


10 - 20

10 - 20

What's wrong with NuTeV?

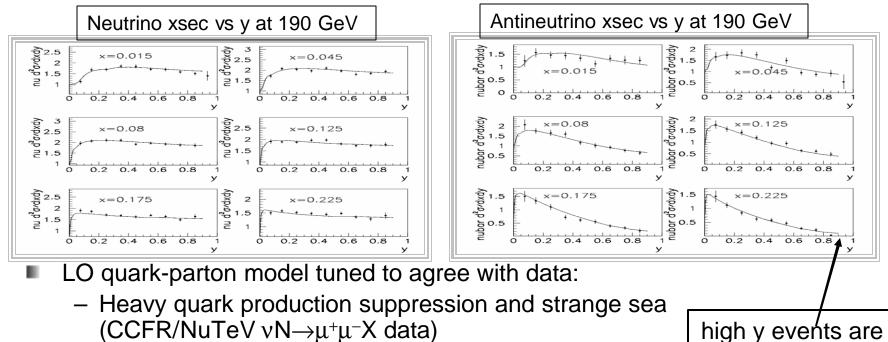

Distributions vs. E_{had}



16

Stability Test: R_{exp} vs. Energy

- Modeling of NC/CC Ratio vs. visible energy checks
 - backgrounds
 - cross-section model
 - detector effects
- Bottom line: no obvious causes for concern



Cross-Section Model Concerns

- 1. "Enhanced LO" vs NLO QCD
- 2. EM Radiative Corrections

Enhanced LO Cross-Section

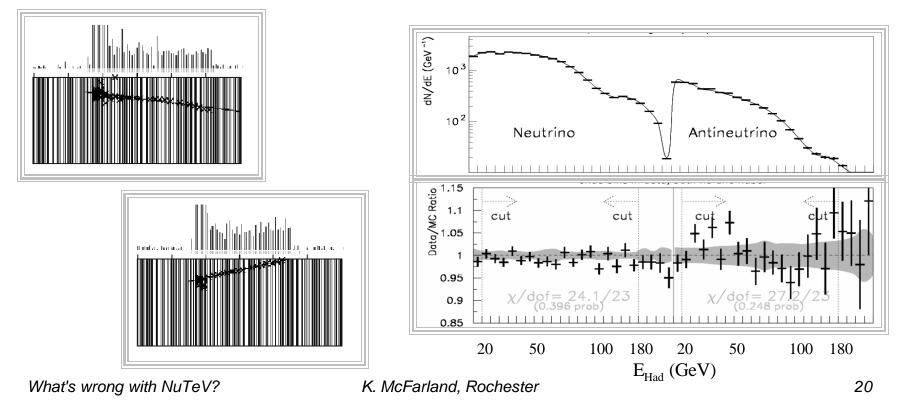
- "Enhanced" means: include R_L and higher twist terms
- PDFs extracted from CCFR data exploiting symmetries:
 - Isospin symmetry: $u^p=d^n$, $d^p=u^u$, and $s(x) = \overline{s}(x)$
- Data-driven: uncertainties come from measurements

- $-R_L$, F_2 higher twist (from fits to SLAC, BCDMS)
- d/u constraints from NMC, NUSEA(E866) data
- Charm sea from EMC F^{cc}

Model is fit directly to this data; uncertainties come from data.

What's wrong with NuTeV?

CCFR Data


background to

the neutral

current sample

Charged-Current Control Sample

- Medium length events, clearly CC but with similar kinematics to NC candidates from CC events, check modeling
- Excellent agreement with prediction

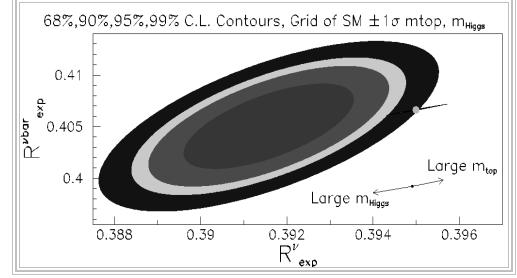
PDF changes have little effect

e. 0.034 0.032 S_R^2 0.03 SM 0.028 $m_h = 500 \,\mathrm{GeV}$ 0.298 0.3 0.302 0.304 0.306 g_L^2

(S.Davidson et al. hep-ph/0112302)

Extreme variations with LO/NLO PDF Sets (no NLO m_c effects). No attempt to make cross-section model + PDFs fit v data!

- Illustrates (relative) independence of R⁻ from (most) PDF details, even s(x) !
- But this does not prove NLO effects are small
- Also, this is R⁻, not the full NuTeV analysis.


How is NuTeV's Analysis Different from R⁻?

- Backgrounds (excluding v_e background)
 - Taken from data. Only increase statistical errors.
- Cross-talk (including v_e background)
 - Dilute statistical significance of the result $\Rightarrow \left| \frac{\partial \sin^2 q_W}{\partial ?} \right| < \left| \frac{\partial R^-}{\partial ?} \right|$
 - − In the case of v_{μ}^{CC} , cross-talk occurs for particular kinematics ■ High y, large θ_{μ}
- Different NC, CC acceptance
 - Very small effects from muon (energy, vertex). Likely negligible?
- Use of external dimuon constraint on charm suppression ("m_c") reduces role of anti-neutrino data
 - Sensitive to charm model
 - And to non-QPM cross-section, e.g. R_L

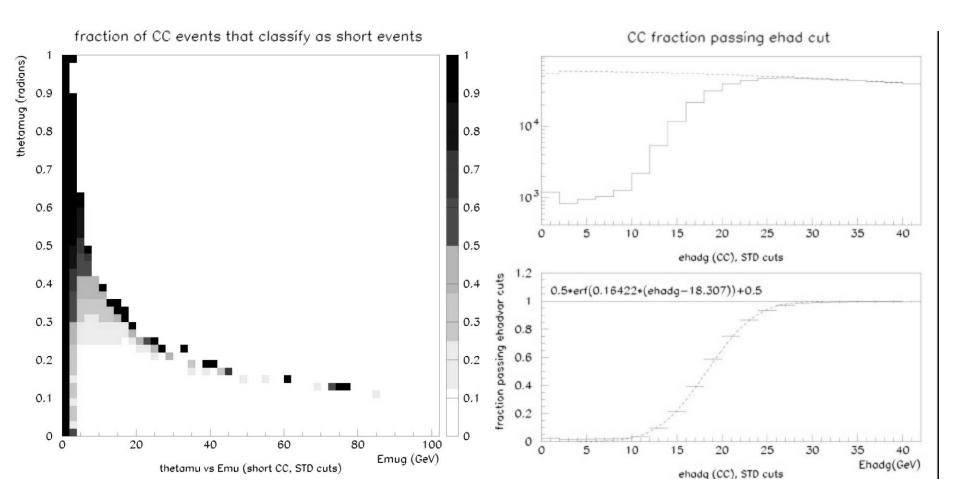
K. McFarland, Rochester

How is NuTeV's Analysis Different from R⁻? (cont'd)

- But if the latter were a problem, we should see a big difference when extracting sin²θ_W without constraint...
- See very small difference if charm mass constraint dropped.
 68%,90%,95%,99% C.L. Contours, Grid of SM ± 1 or mto
 - This is equivalent to saying that R v
 is in agreement with expectations.

 $\sin^2 \boldsymbol{q}_W^{(on-shell)} = 0.2274 \pm 0.0014(stat.) \pm 0.0008(syst.)$

Statistical and experimental systematics increase

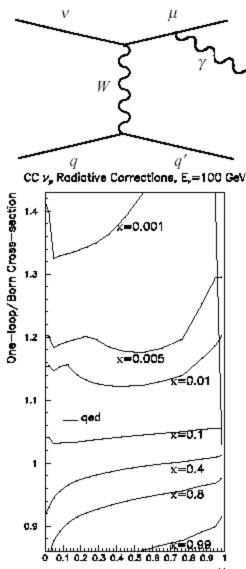

Model errors, of course, decrease...

What's wrong with NuTeV?

NLO QCD Effects

- NLO corrections to R⁻ are small
 - Not the case for R v and R $\overline{^{v}}$ separately...
- So where are the worries?
 - Charm production (concern is tempered by previous argument)
 - Kinematic regions where CC events fake NC
 - I High y, large θ_{μ}
 - NC/CC acceptance difference
- We are actively working to "parameterize" this effect so that independent authors can check LO-NLO differences
 - Should resolve the issue?

NLO QCD Effects (cont'd)


What's wrong with NuTeV?

K. McFarland, Rochester

EW Radiative Corrections

- I see no serious reason to believe effective coupling calculations are inadequate. Comments?
- EM radiative corrections are large
 - Bremsstrahlung from final state lepton in CC is a big correction.
 - Not present in NC; promotes CC events to higher y
 - {δR ^ν, δR ^ν, δsin²θ_W} [~] {+.0074,+.0109,-.0030}
 - These should be checked. How to proceed?

D. Yu. Bardin and V. A. Dokuchaeva, JINR-E2-86-260, (1986)

Symmetry Violations in QCD

- 1. Isospin Violation
- 2. Strange Strange Sea
- 3. Nuclear Effects

Symmetry Violating QCD Effects

- Paschos-Wolfenstein R⁻ assumptions:
 - Assumes total u and d momenta equal in target
 - Assumes sea momentum symmetry, $s = \overline{s}$ and $c = \overline{c}$
 - Assumes nuclear effects common in W/Z exchange
- To get a rough idea of first two effects, can calculate them for R⁻

$$R^{-} \approx \Delta_{u}^{2} + \Delta_{d}^{2} \qquad \text{wh}$$
$$-\boldsymbol{d} N \left(\frac{U_{v} - D_{v}}{U_{v} + D_{v}} \right) \left(3\Delta_{u}^{2} + \Delta_{d}^{2} \right)$$
$$- \frac{1}{2} \left(\frac{\boldsymbol{d} U_{v} - \boldsymbol{d} D_{v}}{U_{v} + D_{v}} \right) \left(3\Delta_{u}^{2} + \Delta_{d}^{2} \right)$$
$$+ \left(\frac{\boldsymbol{d} S}{U_{v} + D_{v}} \right) \left(2\Delta_{d}^{2} - (3\Delta_{u}^{2} + \Delta_{d}^{2})\boldsymbol{e}_{c} \right)$$

where
$$dN = \frac{(N-Z)}{A}$$

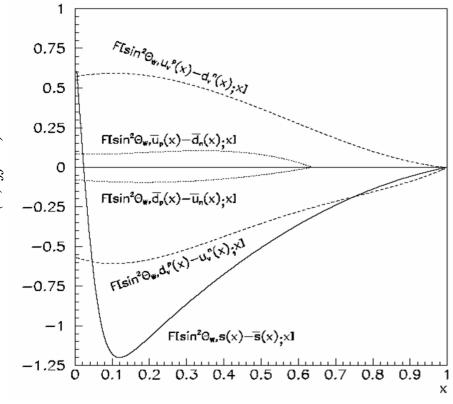
 $U_v = \int x(u_v^p + d_v^p) dx$, etc.
 $dU_v = \int x(u_v^p - d_v^n) dx$, etc.
 $\Delta_{u,d}^2 = (\mathbf{e}_L^{u,d})^2 - (\mathbf{e}_R^{u,d})^2$
 $dS = \int x(s-\overline{s}) dx$
 $\mathbf{e}_c = \text{kinematic charm CC suppression}$

What's wrong with NuTeV?

K. McFarland, Rochester

Symmetry Violating QCD Effects

- Violations could arise from:
 - 1. $A \neq 2Z$ due to neutron excess (corrected for in NuTeV)
 - 2. Isospin violating PDF's, $u_p(x) \stackrel{1}{} d_n(x)$ (Sather; Rodinov, Thomas and Londergan; Cao and Signal)
 - Changes d/u of target \Rightarrow mean NC couplings and CC rates
 - 3. Asymmetric heavy-quark sea, s(x) ? s(x) (Signal and Thomas; Burkhardt and Warr; Brodsky and Ma)
 - Strange sea doesn't cancel in R⁻
 - 4. Mechanisms for different nuclear effects in NC/CC (*Thomas and Miller; Kumano; Schmidt et al; Kulagin*)
 - Affects R^{ν} , $R^{\overline{\nu}}$ directly


What's wrong with NuTeV?

K. McFarland, Rochester

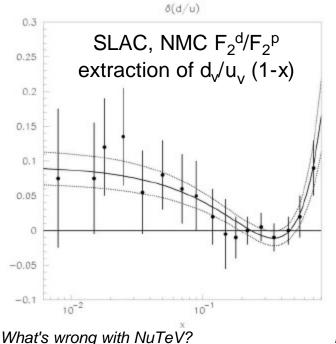
Detailed Examination of Symmetry Violation Effects

"On the Effects of Asymmetric Strange Seas and Isospin-Violating Parton Distribution Function Measured in the NuTeV Experiment (G.P. Zeller et al., Phys.Rev.D65:111103,2002) Corize the shifts from

various asymmetries for the NuTeV sin² θ_{W} analysis technique

Conclusions:

- require a ~5% minority ($d^{p-1} u^n$) valence quark isospin violation
- or a ~30% momentum difference between strange and anti-strange seas What's wrong with NuTeV? K. McFarland, Rochester 30


Neutron excess correction

Neutron excess of target is well-known

- primary *a priori* uncertainty, chemical composition of steel, resolved by assay $\delta N = 0.00574 \pm 0.00002$

- correction for U_v - D_v is large, -0.0080 in sin² θ_w

but it is well-constrained by existing data

- N.B., PRL uncertainty is too small, ±0.0003 is new estimate
 - Thanks to S. Kulagin and S. Alekhin for catching our mistake!

Isopin Violation

Isospin symmetry violation: $u^{p-1} d^n$ and $d^{p-1} u^n$

Bag models offer a useful framework for estimating effect

- NuTeV has used full "Bag Model" calculation (Rodionov, Thomas, Londergan, MPL A9 1799) and obtained

 $\Rightarrow \Delta sin^2 \theta_W = -0.0001$ (G.P. Zeller et al., Phys.Rev.D65:111103,2002)

 But Londergan and Thomas recently suggested the effect is actually -0.0017 in magnitude. What is going on? Not surprisingly, it's a complex story.

NuTeV original calculation

- take Rodionov et al. bag model (δd_v/d_v)(x) at high Q² and multiply by d_v(x) from data
- this is not rigorous...

Londergan and Thomas

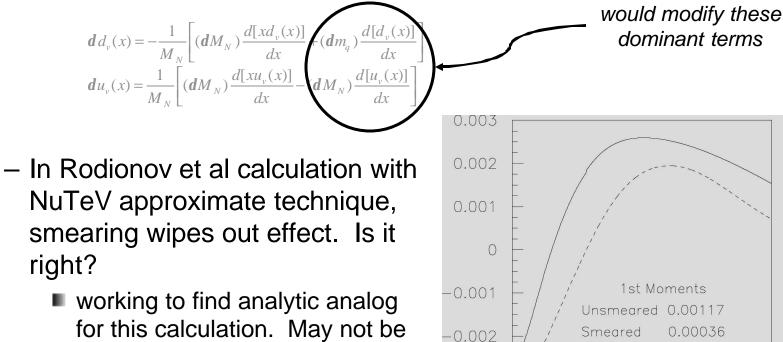

- revived analytic technique of Sather (PLB 274, 433).
 - use analytic relation applied to phenomenological PDFs at bag scale to calculate effect

$$\boldsymbol{d}_{v}(x) = -\frac{1}{M_{N}} \left[(\boldsymbol{d}_{N}) \frac{d[xd_{v}(x)]}{dx} + (\boldsymbol{d}_{M}) \frac{d[d_{v}(x)]}{dx} \right]$$
$$\boldsymbol{d}_{v}(x) = \frac{1}{M_{N}} \left[(\boldsymbol{d}_{N}) \frac{d[xu_{v}(x)]}{dx} - (\boldsymbol{d}_{N}) \frac{d[u_{v}(x)]}{dx} \right]$$

evolve up to expt. scale

- L&T took NLO PDFs (CTEQ3D) at Q² of 2.56 GeV² and didn't evolve it up
- neglects "diquark smearing"

Isospin Violation (cont'd)

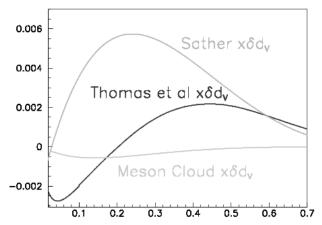

- Compare analytic calculations calculations:
 - KSM/Sam Zeller analytic agrees roughly with NuTeV ad hoc approximate technique without "diquark smearing"

■ (δd_v effect is 0.0005 ? 0.0006)

– New Londergan and Thomas calculation appears in error

Isospin Violation (cont'd)

- What is "diquark smearing"?
 - Idea that energy of diquark in struck nucleon is not a delta-function but has some width


for this calculation. May not be possible or unambiguous.

-0.003

xdelta-d, (solid)dotted is (un)smeared bag calculation

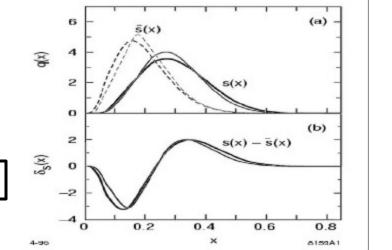
Isopin Violation (cont'd)

- **I**sospin symmetry violation: $u^{p-1} d^{n}$ and $d^{p-1} u^{n}$
 - Another model "Meson Cloud Model": (Cao et al., Phys Rev C62 015203) $\Rightarrow \Delta sin^2 \theta_W = +0.0002$
 - Not clear how much information is contained in these models...
 - What is needed to explain the NuTeV data?

$$\delta d_v \equiv d_v^{\,p} - u_v^n$$

Need d_v quarks in proton to carry $\sim 5\%$ more momentum than u_v quarks in neutron

Model calculations predict an order of magnitude smaller change in minority quark dist


Can global PDF fits accommodate a large enough isospin violation to explain NuTeV?

A Very Strange Asymmetry

 Non-perturbative QCD effects could generate a strange vs. antistrange momentum asymmetry in the nucleon

Brodsky and Ma, Phys. Let. B392

- decreasing at higher Q²

 $s(x) - \overline{s}(x)$

0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9

 $d\sin^2 q_W \approx -0.00$

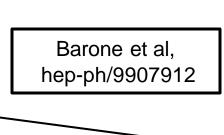
0.01

0.008

0.006

0.004

0.002


o

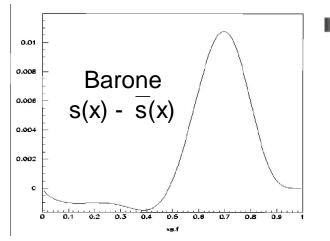
o.2 o.15 o.1 o.05

0.2

0.3

0.25

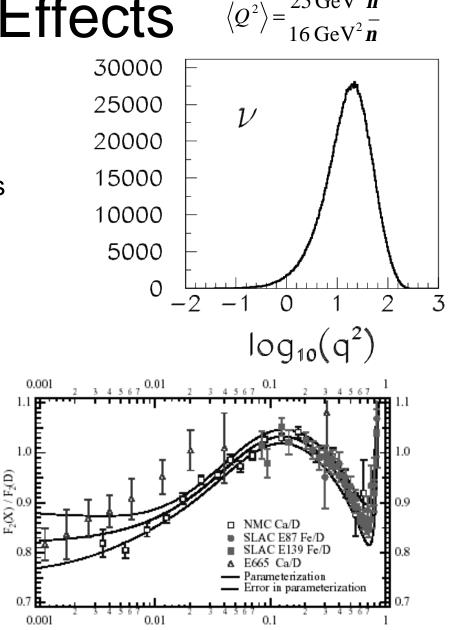
Barone et al. global PDF fit to NC and CC structure function finds strange excess at very high x


– not in favored region for models, but...
What's wrong with NuTeV?
K. McFarland, Rochester

36

Strange / Anti-strange Asymmetry

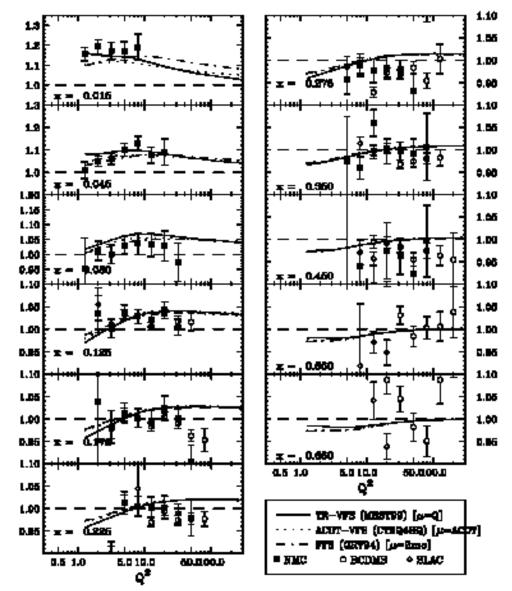
- Fits to NuTeV and CCFR v and \overline{v} dimuon data can measure the strange and antistrange seas separately (v s $\rightarrow \mu c$ but $\overline{v} \ \overline{s} \rightarrow \mu \ \overline{c}$)
 - NuTeV separate v and \overline{v} beams important for reliable separation of s and \overline{s} distributions



- The Barone s \overline{s} would cause an excess at x>0.5 that would be 5% of the total neutrino dimuon cross-section
 - NuTeV+CCFR dimuon data limits any such contribution at x>0.5 to 0.2% (0.6%) in the neutrino (antineutrino) dimuon rates at 90% CL
 - End of story
- Can also fit for a general difference between s(x) and $\overline{s}(x)$
 - Done for NuTeV+CCFR in LO and NLO cross-section models
 - Find -9±5% asymmetry at LO. NLO also consistent with no asymmetry
 - N.b., Parameterized strange sea shape is used; therefore this analysis is insensitive to bumps at very high x (already eliminated) or an excess at very low x

Nuclear Effects

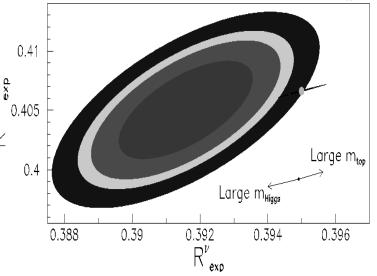
Use NuTeV CC data to fit parton distributions

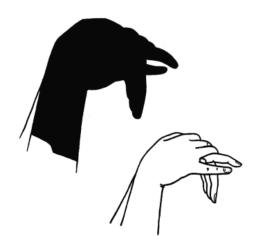

- PDFs that enter are already on iron
- Need to worry about nuclear effects _ that could be different for W and Z exchange?
- NuTeV kinematics are high Q² valence distributions
 - $< E_{v} > ~100 \text{ GeV}$
 - Sea cancels in R⁻
- Fermi motion, Pomeron component of shadowing process independent. EMC?

 $25 \,\mathrm{GeV}^2 \,\mathbf{n}$

Nuclear Effects (cont'd)

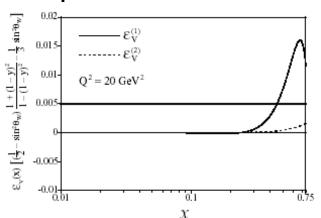
- There is not arbitrary freedom in the data to introduce process dependent nuclear effects
- CC and EM F₂ on iron are in agreement!
- No analogous independent test that EM and NC would have common nuclear effects




Nuclear Effects (cont'd)

- Shadowing due to VMD would be different EM, NC and CC (Miller and Thomas, hep-ex/0204007)
 - Weak evidence for predicted $1/Q^2$ dependence in the NuTeV kinematic region x > 0.01 (NMC)
 - But lower x, Q² data suggests
 VMD (Melnitchouk and Thomas, hep-ex/0208016)
 - Low-x phenomena like VMD affect mainly sea quarks and the effect is canceled in R⁻
 - Would increase both R^{ν} and $R^{\overline{\nu}}$
 - This model would make a very large R^ν shift (4.5σ from SM)
 - A much larger effect is needed for R⁻

What's wrong with NuTeV?


68%,90%,95%,99% C.L. Contours, Grid of SM $\pm\,1\sigma$ mtop, $m_{\rm Higgs}$

Nuclear Effects (cont'd)

- Schmidt *et al* have proposed that the EMC effect is absent in CC (Kolvaenko, Schmidt, Yang, hep-ph/0207158)
 - An effect of that size would explain NuTeV
 - However, this would massively violate the F₂ CC/EM agreement shown previously
- Kumano: are nuclear effects flavor dependent?
 - (Kumano, hep-ph/0209200)
 - fits to data show large effect at at high x (physical reason?)
 - Iow x effect is non-zero, small
 - absence of D-Y anti-shadowing?
 - effect is negligible for NuTeV
- Kulagin: Fermi motion, binding effects and shadowing.
 - Concluded all are small effects for NuTeV

Summary

- For NuTeV the SM predicts 0.2227 ± 0.0003 but we measure
 - $\sin^2 q_W^{(on-shell)} = 0.2277 \pm 0.0013 (\text{stat.}) \pm 0.0009 (\text{syst.})$
 - No obvious experimental problems.
 - QCD effects are a possibility
 - But no attractive explanation now exists
 - Very large isospin violation is a possibility...
 - Nuclear effects? Constrained by data.
 - NLO seems unlikely, but...
 - QED corrections large. To check...
 - Beyond SM Physics?

- Candidate explanations are unattractive, in conflict with other data or require too many miracles...
 - Maybe NuTeV has found something unattractive!
- The result remains an interesting puzzle