

Measurement of the W mass at LEP

Richard Hawkings

EW & Higgs mass mini-workshop, Zeuthen 28/2/03

- W mass measurement at LEP:
 - Introduction: WW-ology
 - Extraction of the W mass
 - Statistics and systematics where do we stand ?
 - Detector systematics
 - Hadronisation
 - Colour reconnection
 - Bose-Einstein correlations
 - Theoretical uncertainties
 - LEP energy
 - Current W mass results (LEP+world)
 - Outlook for the future
 - See LEPEWWG: http://www.cern.ch/LEPEWWG

- At LEP, W bosons mainly produced in pairs:
 - t-channel n_e exchange
 - S-channel Z/g exchange

- W bosons decay to fermion pairs ...
 - W→eυ, μυ, τυ (3 x 11%), or W→qq (68%)
 - ... producing four-fermion final states.
 - Three distinct event topologies:

Other four-fermion final states (mainly via ZZ) interfere and give backgrounds:

Other significant background: $e^+e^- \rightarrow Z/\gamma \rightarrow qq(g)$

- Above threshold, most precise measurement comes from direct reconstruction
 - Derive event-by-event estimator of W mass from kinematics of measured particles.
 - Find most likely W mass for whole sample
- Resolution improved using kinematic fit:
 - Constraint from 4-momentum conservation: $E_{tot}=2E_{beam}$; $p_{tot}=0$; \Rightarrow need LEP beam energy
 - Usually constrain both W masses in event to be equal (W width ~ 2 GeV, smaller than expt. resolution).

WW→qqlv events

- 4 mom conservation + equal W mass⇒2 constraint fit (missing v)
- No constraints for qqτv due to badly measured τ decay – use information from W→qq only
- Low background, resin ~3.5 GeV

WW→qqqq events:

- 5 constraint fit (no neutrinos)
- Best resolution, ~2.8 GeV
- 3 choices of jet assignment to 2 W bosons – combinatorial background.
- Higher background from ZZ, Z/ γ WW \rightarrow IvIv events:
 - Poor resolution, special techniques

Fit techniques

Examples of mass distributions:

m_{rec}/GeV

- Variety of mass extraction methods:
 - Reweighting: generate MC 'template' distributions for various true W masses, find 'best' (A,L,O)

 - Simple Breit-Wigner fit to reconstructed dist. (O)
 - Take into account resolution and I SR \Rightarrow MC studies

- Current LEP average, error breakdown in MeV
 - Preliminary analysis of entire LEP2 data sample, except OPAL year 2000 data.

Source	qqlv	qqqq	Combined
Hadronisation	19	18	18
Colour recon.	-	90	9
Bose-Einstein	-	35	3
Detector	12	8	11
ISR/FSR/rad	8	8	8
Beam energy	17	17	17
Other (uncorl)	4	5	4
Statistical	33	36	30
Total	44	107	42
Stat (no syst)	32	29	22

- Dominant systematics in red:
 - Hadronisation, and final state interactions (CR and BEC) in qqqq
 - This reduces weight of qqqq channel to 0.09.
 - LEP beam energy also significant.

- I deally, measure the 4-vectors of the four fermions produced in the WW event
 - In practice, not so easy...
 - For quarks, perturbative QCD, hadronisation, particle decays, detector effects, calibration, jet clustering...
 - Leptons simpler: detector response and radiation

- Systematics arise in all stages
 - Need to be understood with detailed studies, based on data where possible.

- Need to calibrate/understand detector response to jets and leptons.
- Jet energy scales and resolution:
 - Use $Z \rightarrow qq$ calibration data taken in each year of LEP2.
 - Correct Monte Carlo simulation so it correctly describes data biases and resolution.

- Typical energy scale uncertainties 0.3-0.5[°]
- Also look at 3-jet Z events and high energy qq events to study linearity of jet energy scale.
- Angular biases important study tracking vs calo.
- Lepton energy scales and resolutions:
 - Similar procedures using $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events.
 - Final systematics limited by residual effects and Z data statistics.

- Different hadronisation models are used:
 - Jetset, Herwig, Ariadne, with KoralW/WWFact
 - Hadronisation models tuned by each experiment to describe Z⁰ data, but tunes are different.
 - Experiments put different emphasis on various event properties – event shapes, particle rates, fragmentation functions etc.
 - Within experiments, different models give W mass results differing by 10-50 MeV significant.
 - But with same MC tune, expts get same results.
 - Some differences due to kaon and baryon rates
 - Often reconstructed with 'wrong' masses.
- DELPHI has ingenious Z⁰ data-based approach:
 - Mixed-Lorentz-boosted Z (MLBZ) take LEP1 Z⁰ events and mix together to make Ws (gggg or gqlv)

- Boost Z⁰ to get appropriate W-like kinematics.
- Apply same procedure in MC and data look for consistency.
- Used for both hadronisation and detector effect studies.

- 'Standard' MC models assume decay products of two Ws do not interact.
 - But Ws decay within 1 fm of each other typical strong interaction scale.

- Colour reconnection: Colour flow between quarks from two W decays (perturbative or non-perturbative phase).
- Bose-Einstein correlations: enhances production of identical particles nearby in phase space.
- Both are known in other systems (B mesons, Z, W)
 - What happens in W-pair events?
 - What does this do to the mass reconstruction?

- Several viable models exist, usually implemented in terms of an existing hadronisation model
 - Sjöstrand-Khoze (SK1) based on Lund fragmentation model, strings reconnecting between Ws; adjustable parameter for recon prob.
 - Ariadne dipole-cascade model: reconnection allowed if total string length reduced, and gluon energy smaller than Γ_w =2 GeV (**AR2**)
 - Herwig: cluster model: reconnection allowed for favourable parton-cluster assignments, prob 1/9.
 - ... etc.
- Models predict large effects on recon. m_W
 - SK1: up to ~300 MeV for full reconnection
 - Ariadne (AR2): ~100 MeV
 - Herwig: ~30 MeV
 - \Rightarrow Need to eliminate/constrain models from WW data.
- Initially, effects looked for by comparing W decay properties in qqqq and qqlv events:
 - Charged particle multiplicities, fragmentation functions, event shape variables.
 - No significant effects seen, but sensitivity to 'realistic' models is low.

- Look for CR effects more directly:
 - Particle flow in inter-jet regions, between jets from same and different Ws.

- As in mass analysis, requires jet-W association.
- Use W-mass like selection (A, O) or more restrictive selection of events with clear topology (D,L)
- Look at ratio of particle flow: OPAL Preliminary

R=N(intra W)/N(inter W) 'Fold over' angular distributions to 0<χ<1 Compare data with models

- Extreme SK1 scenario with full recon. excluded
- Method not sensitive to AR2 CR model
- Significant differences between non-CR hadronisation models.

- Preliminary results available from all experiments
 - Combination done by 'calibrating' analyses using common MC samples of various models.
 - Integrate R over 0.2 < χ < 0.8
 - Define r as ratio of data/no-CR MC
 - Compare measured r with that expected in specific CR model, normalise LEP expts and combine:

- Data disfavour no-CR scenario at ~2σ
- Extreme SK1 scenario excluded at 5.2σ
- AR2 (and Herwig CR) disfavoured at 2-2.5σ
 - But little sensitivity to these models systematics ?

- SK1 model has parameter allowing fraction of reconnected events to be adjusted.
 - Tune to LEP data results from particle flow:

- 68% C.L. limit: 25%<P_{reco}<65%; moderate CR.
 - Systematic error on qqqq W mass of 90 MeV from 65% recon probability compared to no-CR
 - Result valid only in SK1, but full AR2 mass shift is also ~90 MeV.

Changing the analysis sensitivity

- Another recent idea:
 - Modify jet algorithm to reduce influence of soft particles between jets.
 - Cone of restricted radius (R~0.25-1.0)
 - Momentum cut to remove soft particles (1,2,3 GeV)
 - Weight particles by |p|^κ when calculating direction
 DELPHI preliminary SK1 curves

- Techniques reduce statistical sensitivity, but also reduce systematics due to some CR models.
- Can also use differences between jet algorithms to search for or constrain CR models.
 - Similar sensitivity to particle flow method, uncorrelated
 - Ongoing analysis by experiements, eventual LEP combination.
 - Not sensitive to Ariadne AR2 model unless this can be eliminated another way, qqqq channel is sunk...

Bose-Einstein correlations known in Z⁰ decays:

- $R(Q) = \rho(Q)^{data} / \rho^{ref}(Q); Q^2 = -(p_1 p_2)^2$
 - Enhancement at low Q for identical bosons (e.g π^+ pairs) compared to reference distrib. without BEC.
- BEC exist between decay products of one W, what about between decay products of different Ws?
- Need ref. distribution with BEC in same W.
- Construct by mixing hadronic parts of two qqlv events

 data based reference distribution to compare with
 data WW→qqqq events
 - Problems: background $(Z/\gamma \rightarrow qq)$, other correlations

- Combine some existing LEP measurements (A,L)
 - Use common MC samples with/without inter-W BEC (LUBOEI) as for CR to calibrate analyses
 - Result in terms of 'fraction' of full inter-W BEC:

- Inter-W BEC disfavoured by this combination, but
 - ...need to include upcoming DELPHI and OPAL results
- W mass systematic for full inter-W vs no inter-W BEC is 35 MeV, hopefully error can be reduced.
 - Need to generalise to other BEC models.

 O(α) QED corrections to W-pair production are not trivial:

- Published LEP analyses based on KoralW
 - Crudely, treats only I SR and FSR.
- New Monte Carlo programs available:
 - Leading or double-pole approximations ...
 - YFSWW (Jadach et al) (YFS+KoralW=KandY): O(α) non-leading EW corrections, screened Coulomb correction.
 - RacoonWW (Denner et al): Full O(α) corrections to Wpair diagrams.
 - Interfacing generators to expt simulation is non-trivial.. e.g. problems of double counting FSR.
- Effects on analyses under study:
 - W mass: shifts of O(10 MeV) seen between KoralW and KandY, maybe larger.
 - Some evidence of cancellation between different effects
 - Comparisons of KandY and Racoon, different schemes (LPAa vs LPAb)

- Use of kinematic fit with energy constraint:
 - Drastically improves event-by-event mass reslⁿ.
 - ...but requires precise knowledge of beam energy.
 - + For 20 MeV uncertainty on $E_{\text{beam}^{\prime}}$ (of 100 GeV) get 17 MeV uncertainty on $m_{\!_W}\!.$
 - At LEP1, technique of resonant depolarisaton allowed ΔE_{beam} of 1-3 MeV for LEP1 Z⁰ measurements.
 - Depolarisation does not work above 60 GeV, have to extrapolate using E_{beam} ~B.
 - B measured with 8 dedicated NMR probes, plus flux loop as cross check.

- Current ΔE_{beam} of 20 MeV \Rightarrow 17 MeV on m_W
 - Error mainly from uncertainties in extrapolation.

- A lot of ingenuity/effort cross-checking E_{beam}
- LEP spectrometer:
 - Measurement of beam bending in a carefully mapped dipole magnet.
 - Much harder than first thought, understanding of 'background' B-fields, BPM systematics.
- Synchrotron tune: Q_s vs RF voltage.
 - Dependence of synchrotron oscillation frequency on RF voltage allows beam energy to be deduced.
 - Detailed understanding of many machine effects, RF voltage distribution,.... dedicated machine expts.
- Radiative return measurements:
 - LEP experiments use radiative Z⁰ production to 'measure' the Z mass ($e^+e^- \rightarrow Z\gamma \rightarrow II\gamma$ or $qq\gamma$)

- Uses similar kinematic fit techniques to W mass measurement.
- Z-mass is known from LEP1, cross-check E_{beam}

All methods now giving consistent results.

Final error on LEP energy may be reduced

 ... include information on spectrometer and Q vs RF?

- Ivlv events cannot be fully reconstructed
 - Lepton energy spectrum is sensitive to m_w
 - Additional assumption in kinematic fit allows a pseudom_w to be reconstructed
 - Assume both neutrinos in plane of charged leptons

OPAL result: m_w=80.41±0.41(stat)±0.13(syst) GeV

 Not competitive with qqlv or qqqq results, but very different systematics ⇒useful at linear collider

New LEP combined results for winter 03:
 Change since summer: ALEPH shift by -79 MeV

- Including LEP threshold measurement ...
 - m_w=80.412±0.030 (stat) ± 0.029 (syst) GeV
 - Change of -35 MeV since summer 02
- Difference between qqqq and qqlv channels currently 22±43 MeV – no evidence of qqqq shift due to FSI
 - (FSI systematic errors set to zero here)
- Combination with p-pbar m_W of 80.454 ± 0.059 GeV
- World average value:

$m_W = 80.427 \pm 0.034 \text{ GeV}$

Change of -22 MeV since summer 02

Richard Hawkings

- Very similar techniques used to measure Γ_W
 - Resolution > natural width, observed width dominated by detector/reconstruction effects.
 - qqqq and qqlv channels, similar systematic errors as for W mass.
 - Not all data and channels analysed yet:

- LEP: Γ_W =2.150 ± 0.068 (stat) ± 0.060 (syst) GeV
- Combine with Tevatron result to get world average

$G_{W} = 2.136 \pm 0.069 \text{ GeV}$

• Standard Model predicts relation between W mass and width... expect around 2.09 GeV.

- LEP W mass results still all preliminary
 - Work on final systematics ...
 - Current uncertainty on W mass from LEP: **42 MeV**
 - Improved understanding of FSI (esp. colour recon), incorporating results of dedicated analyses.
 - Improved understanding of $O(\alpha)$ radiative effects
 - Decreased LEP beam energy uncertainty
 - Hope for final LEP error around **35 MeV**.
- Beyond LEP:
 - Tevatron run I analyses: 59 MeV
 - Run II now going on ... good scope for improvement:
 - Larger data samples more Z^0 for calibration
 - Eventually systematics limited
 - O(α) effects may become important
 - Hope to get to ~20 MeV error eventually.
- Beyond Tevatron:
 - LHC ATLAS/CMS:
 - Hope for 15 MeV some improvement over Tevatron, but completely systematics limited – very challenging.
 - 15 MeV is useful precision for 2 GeV error on m_{top}.
 - Linear Collider:
 - Threshold scan or direct reconstruction,
 - Both have potential to go below 10 MeV
 - Factor 4 reduction in next 10-15 years ...