- Introduction
- Measurements of electroweak quantities on the Z
- Measurement of $m_{\rm W}$
- Theoretical aspects
- Study of CP-violation in the B-sector

Introduction

Interest in precision measurements

Test consistency of the theory on the loop level

Two types of loop corrections:

• universal corrections to propagator

parameters:

- $-\Delta \rho$: absolute normalization of Z couplings
- $-\Delta\kappa \ (\sin^2\theta^l_{eff})$: effective weak mixing angle in Z-fermion couplings
- $-\Delta r$: Relation $G_{\mu} \leftrightarrow m_{W}$
- vertex corrections (only interesting fir b-quarks as partner of top)

Contributions to loop corrections

- corrections from isospin mass splitting $(\propto m_{\rm t}^2 \text{ in SM})$
- corrections from Higgs sector $(\propto \log(m_{\rm H}) \text{ in SM})$

Contributions to vertex corrections for b-quarks

- corrections from b-t mass splitting ($\propto m_{\rm t}^2$)
- corrections from charged Higgs sector and its SUSY partners, if exists
- corrections from special role of top-quark e.g. in technicolor models

Aim: see effects of new physics in precision dataHistorical example: Top mass prediction (1993)Fit to all electroweak precision data gave

In 1995 the top-quark was discovered at the TEVA-TRON with $m_{\rm t} \sim 175 \,{\rm GeV}$

Hope at least to repeat this with the Higgs Boson

LEP+SLD+TEVATRON measure electroweak observables on the permille level

Quantities:

- Z-lineshape: Partial widths of $Z \to f\bar{f}, \Delta \rho, N_{\nu}$
- Asymmetries: Weak mixing angle in Z-decays, $\sin^2 \theta_{\text{eff}}^{\ell}$
- b-quark partial width and asymmetries (R_b, \mathcal{A}_b) Mass dependent vertex corrections
- W-mass: Δr

Present situation:

- LEP: $\sim 4 \times 4 \cdot 10^6$ Zs with unpolarized beams $\sim 4 \times 500 \,\mathrm{pb}^{-1}$ above the W-threshold
- SLD: ~ $5.5 \cdot 10^5$ Zs with $\mathcal{P} \sim 75\%$ electron polarization

Assumptions

- The linear collider can produce ~ 10^9 Zs on resonance (corresponds to ~ $30 \,\mathrm{fb}^{-1}$ or 50 days) $\mathcal{L} = 7 \cdot 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1} \Rightarrow 230 \,\mathrm{Hz}$ of $\mathrm{Z} \to \mathrm{q}\bar{\mathrm{q}}$
- similar luminosity is possible near the W-threshold
- electrons and positrons can be polarized with $\mathcal{P}_{e^-} = \pm 80\%, \ \mathcal{P}_{e^+} = \pm 60\%$ (corresponds to an effective polarization of $\frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}} \sim 95\%$)
- positive and negative polarizations can be switched randomly from bunch to bunch (or train to train) independent for electrons and positrons
- polarimeters are available for relative measurements

Cross section around Z-peak:

$$\sigma_f(s) = \frac{12\pi}{m_Z} \frac{\Gamma_e \Gamma_f s}{\left(s - m_Z^2\right)^2 + \left(\frac{s}{m_Z}\right)^2 \Gamma_Z^2} + \sigma_{\text{int}} + \sigma_{\gamma} + \text{rad. corr.}$$

$$\Gamma_{\ell} \approx (1 + \Delta_{\rho}) \Gamma_{\ell}^{(B)}$$

$$\Gamma_{\text{had}} = (1 + \alpha_s / \pi + ...) \Gamma_{\text{had}}^{(0)}$$

Minimally correlated observables:

$$\begin{array}{c|c} & \text{LEP precision} \\ \hline m_Z & 0.2 \cdot 10^{-4} \\ \hline \Gamma_Z & 0.9 \cdot 10^{-3} \\ \sigma_0^{\text{had}} = \frac{12\pi}{m_Z^2} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2} & 0.9 \cdot 10^{-3} \\ \hline R_\ell = \frac{\Gamma_{\text{had}}}{\Gamma_l} & 1.2 \cdot 10^{-3} \end{array}$$

 \Rightarrow Need to scan

 \Rightarrow Need absolute cross sections

Assumptions:

- relative beam energy error around Z-pole: 10^{-5} $\Rightarrow \Delta \Gamma_Z / \Gamma_Z = 0.4 \cdot 10^{-3}$ (Currently under debate if $\Delta E_b = 10^{-5}$ is possible and if beamstrahlung and beamspread are enough under control)
- selection efficiency for μs , τs , hadrons (and exp error on \mathcal{L}) improved by a factor three relative to the best LEP experiment $\Rightarrow \Delta R_{\ell}/R_{\ell} = 0.3 \cdot 10^{-3}$
- theoretical error on luminosity stays at 0.05% $\Rightarrow \Delta \sigma_0^{\text{had}} / \sigma_0^{\text{had}} = 0.6 \cdot 10^{-3}$ (again if beamspread/-strahlung understood)

Improvement on lineshape related quantities:

	LEP	Giga-Z
$m_{ m Z}$	$91.1874 \pm 0.0021 \text{GeV}$	$\pm 0.0021 \text{GeV}$
$lpha_s(m_{ m Z}^2)$	0.1183 ± 0.0027	± 0.0009
Δho	$(0.55 \pm 0.10) \cdot 10^{-2}$	$\pm 0.05 \cdot 10^{-2}$
$N_{ u}$	2.984 ± 0.008	± 0.004

scale DELPHI analysis:

$$R_b = 0.21634 \pm 0.00075 (stat \, dat + MC) \\ \pm 0.00028 (uds - bg) \\ \pm 0.00030 (c - bg) \\ \pm 0.00027 (hem \ corr)$$

DELPHI working point: $\varepsilon_b \approx 30\%$ purity $\approx 98\%$ Possible for TESLA: $\varepsilon_b \approx 40\%$ purity $\approx 99.5\%$

- statistical error down by a factor 20
- c-background down by a factor 4
- uds-background mainly from gluon splitting to $b\bar{b}$ can be measured much better with TESLA
- hemisphere correlation is mainly QCD
 - $-\det$ resolution factor 10 better than LEP
 - losses are mainly due to mass cut (Lorenz invariant)
 - -energy dependence should be much smaller
 - $-\operatorname{also}$ this source should decrease by a factor 4-5
- $\Delta R_b = 0.00014$ should be possible (factor 5 to LEP)

Definition

$$\sigma = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$$

with \mathcal{P}_{e^+} (\mathcal{P}_{e^-}) longitudinal polarizations of the positrons (electrons)

 $A_{\rm LR}$ measures weak mixing angle $\sin^2 \theta_{\rm eff}^{\ell}$:

$$A_{\text{LR}} = \mathcal{A}_{\ell}$$
$$\mathcal{A}_{\ell} = \frac{2g_{Vl}g_{Al}}{g_{Vl}^2 + g_{Al}^2}$$
$$\frac{g_{Vl}}{g_{Al}} = 1 - 4|Q_l|\sin^2\theta_{\text{eff}}^\ell$$

• $\sin^2 \theta_{\text{eff}}^{\ell}$ is a very sensitive variable to see loop corrections to the Z-couplings.

• $A_{\rm LR}$ is the variable most sensitive to $\sin^2 \theta_{\rm eff}^{\ell}$

The (extended) Blondel scheme

Four independent measurements:

(4 combinations with positive/negative electron/ positron polarization)

 $\sigma_{++} = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\text{LR}} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$ $\sigma_{-+} = \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\text{LR}} (-\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$ $\sigma_{+-} = \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\text{LR}} (\mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right]$ $\sigma_{--} = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\text{LR}} (-\mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right]$ $\Longrightarrow A_{\text{LR}} \text{ can be measured without knowing}$ $\mathcal{P}_{e^+}, \mathcal{P}_{e^-}:$ $A_{\text{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{-+} - \sigma_{--})}}}$

About 10% of the statistics is needed on the small cross sections

Only difference between $|\mathcal{P}_{e^{\pm}}^+|$ and $|\mathcal{P}_{e^{\pm}}^-|$ needs to be known from polarimetry

Can be brought under control with polarimeters a la SLD

Polarization difference $(\Delta \mathcal{P}_{e^{\pm}} = |\mathcal{P}_{e^{\pm}}^+| - |\mathcal{P}_{e^{\pm}}^-|)$:

- Need SLD like polarimeter
- Asymmetry in one polarimeter channel: $A_i = a_i \mathcal{P}_e \mathcal{P}_\gamma \ (a_i = \text{analyzing power})$
- Laser polarization can be switched pulse to pulse
- Allow for different laser currents dependent on the polarization
- Need two polarimeter channels with different analyzing power
- combined fit of Z-rates and polarimeter rates can get $\Delta \mathcal{P}_{e^{\pm}}$ and a_i as well
- However need polarimeter counting rates about 10 times the Z rate (ok for SLD)

$$\Delta A_{\rm LR} = 4 \cdot 10^{-5} \cdot \sqrt{\frac{10^9}{N_Z}}$$

Systematic uncertainties

- Beam energy: $\Delta A_{\rm LR} / \Delta \sqrt{s} \approx 2 \cdot 10^{-2} / {\rm GeV}$ \Rightarrow need $\Delta \sqrt{s} \approx 1 {\rm MeV}$ relative to $m_{\rm Z}$
- Luminosity difference: Only relative precision needed.
 Should be no problem if luminometer inside the

mask is possible

- Backgrounds: To be kept below 10⁻⁴ According to LEP experience no problem
- Beamstrahlung: $\Delta A_{\rm LR} = 9 \cdot 10^{-4}$ Needs to be known on the few percent level (partially covered by Z-scan)

Assume $\Delta A_{\rm LR} = 10^{-4} \Rightarrow \Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.000013$

Without polarized beams (LEP) the forwardbackward asymmetries can be measured:

With polarized beams (SLD,TESLA) the left-right-forward-backward asymmetries can be measured:

$$A_{FB,LR}^{q} = \frac{\sigma_{L,F}^{(q)} - \sigma_{L,B}^{(q)} - \sigma_{R,F}^{(q)} + \sigma_{R,B}^{(q)}}{\sigma_{L}^{(q)} + \sigma_{R}^{(q)}}$$
$$= \frac{3}{4} \mathcal{P} \mathcal{A}_{q}$$

Statistically factor $\mathcal{P}/\mathcal{A}_{e} \sim 6$ more sensitive to \mathcal{A}_{b} However most systematics scale with the asymmetry Two main techniques: leptons and jetcharge

- Statistical error $\Delta \mathcal{A}_{\rm b} \approx 4 \cdot 10^{-4}$ in both cases
- Light quark systematics can be reduced by a (harder) lifetime tag
- For jetcharge reduce hemisphere correlations by a thrust cut
- leptons will be dominated by $B\overline{B}$ -mixing (statistical error!)
- A total error of $\Delta A_{\rm b} = 1 \cdot 10^{-3}$ seems realistic

Similar improvement as for \mathcal{A}_{e}

Best possible method: threshold scan

- spend 100 fb⁻¹ at $\sqrt{s} \sim 161 \,\text{GeV} (1 \,\text{year!})$
- polarization is very useful to enhance cross section or measure background

 $\sigma_{\text{WW}} = 3\sigma_{\text{WW}}^{\text{unpol}} \qquad \mathcal{P}_{e^-} = -0.8, \ \mathcal{P}_{e^+} = 0.6$ $\sigma_{\text{WW}} = 0.1\sigma_{\text{WW}}^{\text{unpol}} \qquad \mathcal{P}_{e^-} = 0.8, \ \mathcal{P}_{e^+} = -0.6$

- assume efficiency/background as at LEP
- \bullet perform 5-point scan
- assume point to point systematics negligible
- beam energy is known to well below 5 MeV (A relative calibration to the Z-mass is fine)

 $\Delta \varepsilon / \varepsilon = 0.5\%, \ \Delta \mathcal{L} / \mathcal{L} = 0.25\% \quad \Delta m_{\rm W} = 6 \,\mathrm{MeV}$ $\Delta \varepsilon / \varepsilon, \Delta \mathcal{L} / \mathcal{L}$ fitted $\Delta m_{\rm W} = 7 \,\mathrm{MeV}$

Measurement is statistics limited

Precision data and the LHC

 m_{W}

- LHC has infinite statistics for W-production
- two main sources of error:
 - -energy scale of the detector
 - parton distribution function
- $\Delta m_{\rm W} = 15 \,\text{MeV}$ might be possible although extremely difficult

 $\sin^2 \theta_{e\!f\!f}^l$

- in principle $\sin^2 \theta_{eff}^l$ can be measured from forward backward asymmetry $q\bar{q} \rightarrow \ell^+ \ell^-$ (At $\sqrt{s} = m_Z$: $A_{FB}^0 = \frac{3}{4} \mathcal{A}_i \mathcal{A}_f$)
- select events with $m(\ell^+\ell^- \approx m_Z \text{ and large boost})$
- the high energy quark is then on average a valence quark, the low energy one a (sea) antiquark
- possible statistical precision $\Delta \sin^2 \theta_{eff}^l = 0.0001$
- unclear if systematics can be brought to this level

Interpretation of precision measurements

Parametric errors

- largest effect: Running of α $(\alpha(m_Z) = \alpha(0) \frac{1}{1 - \Delta \alpha})$
 - -Using data only (without the latest BES results) ($\delta(\Delta \alpha) = 0.00065$): $\Delta \sin^2 \theta^{\ell} = 0.00022$, $\Delta m = -12$ MeV

$$\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.00023, \ \Delta m_{\text{W}} = 12 \,\text{MeV}$$

- $-\sim$ factor three improvement using perturbative QCD at low energy
- -with $\sigma(e^+e^- \rightarrow had)$ below the Υ to 1% $(\delta(\Delta \alpha) = 0.000046)$: $\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.000017, \ \Delta m_{\text{W}} < 1 \text{ MeV}$
- 2 MeV error on m_Z gives $\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.000014, \ \Delta m_W = 1 \text{ MeV}$ (if W-mass calibrated to m_Z)
- $\Delta m_{\rm t} = 1 \,{\rm GeV}$ gives $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.00003, \, \Delta m_{\rm W} = 6 \,{\rm MeV}$ \Rightarrow no problem with LC precision of $m_{\rm t}$ (< 200 MeV)

SM and MSSM make accurate predictions for ${\rm sin}^2\theta^\ell_{\rm eff}$ and $m_{\rm W}$

If no new physics found up to then:

Standard Model Higgs can be predicted to 5% accuracy:

Can test the theory if a Higgs of $m_{\rm H}\sim 170\,{\rm GeV}$ is found

Possible scenario inside the MSSM:

- some SUSY parameters measured at LHC e.g. stop sector
- however some of the parameters still uncertain

Precision measurements can constrain allowed SUSY parameter range

In this example one can get a fairly good measurement of $\tan \beta$ and some ideas on m_A

Model independent analysis (ε , ST parameters)

- ε_1 (T): absorbs large isospin splitting corrections
- ε_3 (S): only logarithmic dependencies
- ε_2 (U): additional (small) correcting to m_W

- \bullet dramatic improvement in $m_{\rm H}$ direction
- improvement perpend. to $m_{\rm H}$ largely due to $m_{\rm W}$
- significant Higgs constraint independent of ε_1 (T) possible

E.g. exclusion of a two Higgs doublet model with a light Higgs

(that cannot be excluded by direct searches)

For these types of exclusions $m_{\rm W}$ is important!

 $R_{\rm b}$ is sensitive e.g. to masses within Supersymmetry

CP-violation studies

measure time dependent asymmetries

$$A(t) = \frac{N_{B^0}(t) - N_{\bar{B}^0}(t)}{N_{B^0}(t) + N_{\bar{B}^0}(t)} = a_{\cos} \cos \Delta m t + a_{\sin} \sin \Delta m t$$

mainly two examined decay modes

•
$$B^0 \rightarrow J/\Psi K_s^0$$
:
 $-a_{\sin} = -\sin 2\beta, \ a_{\cos} = 0$
• $B^0 \rightarrow \pi^+ \pi^-$:

- $-a_{\sin} = -\sin 2\alpha$, $a_{\cos} = 0$ if penguin diagrams can be ignored
- -however a_{\sin} , a_{\cos} modified by penguin contributions, hard to calculate
- can be disentangled by measuring branching ratios $B^0 \to \pi^+ \pi^-$, $B^0 \to \pi^0 \pi^0$, $B^+ \to \pi^+ \pi^0$

Experimental analysis:

- identify initial state b-charge
- reconstruct decay mode
- measure eigentime to decay (easy in LC environment with fully reconstructed decays)

total statistics: $4 \cdot 10^8$ b-hadrons Tagging of primary b-charge:

• Polarization gives primary flavor tagging "for free"

Final state identification:

• Missing particle ID can be replaced by excellent momentum resolution

Results

	$\sin 2\beta$	" $\sin 2\alpha$ "
BaBar	0.12	0.26
CDF	0.08	0.10
ATLAS	0.02	0.14
LHC-b	0.01	0.05
TESLA	0.04	0.07

Not the best, but interesting cross check!

Branching ratios $B^0 \to \pi^0 \pi^0, \ B^+ \to \pi^+ \pi^0$

- needed to disentangle direct from penguin contributions in $B^0 \to \pi^+ \pi^-$
- only possible in e⁺e⁻-machines
- Needs at a linear collider:
 - b-tagging opposite to signal hemisphere for $b\bar{b}$ -selection
 - anti-b-tagging in signal hemisphere to suppress other b-decays
 - good calorimeter resolution (mainly spatial) for mass measurement

(Resolution depends strongly on the calorimeter design)

Finally a signal should be seen above background

	$\frac{\Delta BR(B^+ \to \pi^+ \pi^0)}{BR} \\ (5 \cdot 10^{-6})$	$\frac{\Delta BR(B^0 \rightarrow \pi^0 \pi^0)}{BR} \\ (2 \cdot 10^{-6})$
BaBar $(300 {\rm fb}^{-1})$	11	17
GigaZ (10^9 Zs)	15	24

Competitive with 10^9 Zs, leading with 10^{10} Zs

 $B_s \overline{B}_s$ -oscillations

- "golden" mode: $B_s \to D_s \pi$, $D_s \to \phi \pi$, KK can be reconstructed almost background free
- proper time res. dominated by vertex res.

• $\Delta m_s \sim 40 \mathrm{ps}^{-1}$ possible with 10⁹ Zs

• resolution limit around $\Delta m_s \sim 80 \mathrm{ps}^{-1}$

Conclusions on lower energy running

- With less than a year of running on the Z huge progress on some important electroweak precision observables can be made
- With an additional year around the W-pair threshold also a significant improvement on $m_{\rm W}$ can be obtained
- It seems that with some effort at Beijing/ Novosibirsk the running of α can be measured to a high enough precision
- Only with the precise data from TESLA the experimental measurements can match the theoretical predictions after the Higgs is found
- Some interesting cross checks in B-physics, however no "golden channel" (yet)