- Introduction
- Measurement of the top-mass
- Top-quark couplings
- Top-Higgs Yukawa coupling \rightarrow Higgs section
- Conclusions

Introduction

- The top quark is the heaviest fermion $(m_{\rm t} \approx 175 \,{\rm GeV} \sim v)$
- In the SM it is just the isospin partner of the bquark
- however in some models it plays a special role in electroweak symmetry breaking
- it is very important to study the top properties
- since $m_t^2 \gg m_W^2$ the top width is very large

$$\Gamma_t \approx \frac{G_{\rm F} m_{\rm t}^3}{8\sqrt{2}\pi} \approx 1.7 \,{\rm GeV} \gg \lambda_{QCD} \Rightarrow$$

there exist no toponium resonances at threshold
the top decays before it fragments

 \Rightarrow the top-polarization gets preserved to the decay, like the τ at LEP

LHC:

- $\sigma(t\bar{t}) \sim 1 \text{ nb} \Rightarrow$ huge data samples should allow very precise studies of top decays, especially rare decays
- $t\bar{t}$ production by strong interaction \Rightarrow no interesting information on $t\bar{t}Z$ coupling
- $t\bar{t}$ production in continuum \Rightarrow no threshold scan possible

LC:

- $\sigma(t\bar{t}) \sim 1 \,\mathrm{pb} \Rightarrow \sim 10^5 \,t\bar{t}$ events allow for precise studies
- $t\bar{t}$ production via γ , Z exchange $\Rightarrow t\bar{t}Z$ couplings can be measured
- \sqrt{s} can be adjusted at will \Rightarrow threshold scan possible

Measurement of the top-mass

Why do we want to know the top-mass as accurate as possible?

• a future theory of flavor hopefully predicts fermion masses or mass/ratios

 \rightarrow The mass of the heaviest quark should be known as close as possible to the precision of the $\tau\text{-mass}$

- in precision tests of the SM $m_{\rm t}$ enters quadratically:
 - $-\Delta m_{\rm W}/\Delta m_{\rm t} = 0.006$ ultimately: $\Delta m_{\rm W} = 6 \,\mathrm{MeV}$
 - $-\Delta \sin^2 \theta_{\rm eff}^{\ell} / \Delta m_{\rm t} = 0.00003 / \,\text{GeV}$ ultimately: $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.00002$

 \Rightarrow need $\Delta m_{\rm t} < 1 \,{\rm GeV}$

• In SUSY models radiative corrections to light Higgs (h) mass: $\Delta m_h / \Delta m_t \approx 1$ \Rightarrow aim for $\Delta m_t \approx \Delta m_h \approx 50 \text{ MeV}$

What is the top mass?

- Quarks are not free particles \Rightarrow their mass is not unambiguously defined
- pole mass: pole of propagator, natural definition if top-decays are reconstructed
- MS-mass: running mass in QCD (like coupling constant), needed in radiative corrections
- conversion pole mass $\rightarrow \overline{\text{MS}}$ -mass has theoretical uncertainties of $\mathcal{O}(1 \text{ GeV})$
- limit of all top-reconstruction methods
- additional ambiguity of same order for reconstruction methods since only color neutral objects can be reconstructed
- threshold scans: no natural mass definition, can do calculations in several ones

Most promising method: threshold scan

- Due to large top mass and the corresponding short lifetime no toponium resonances are existing any more
- However still large corrections due to Coulomblike QCD potential:

$$E_{\text{tot}}(r) = 2m_{\text{t}} + V(r)$$
$$V(r) \propto \frac{\alpha_s(1/r)}{r}$$

• QCD corrections known to 3rd order (pole mass)

- large scale dependence and huge shift of the peak from order to order using pole mass
- theoretical error on $m_{\rm t}$ unclear
- \bullet in addition the same uncertainty appears going from $m_{\rm pole}$ to $m_{\overline{\rm MS}}$
- both problems can be solved by redefining the mass, shifting part of the potential to the mass definition

Threshold cross section now very well under control

• In the QCD-corrected cross section some remnant of the 1S peak remains visible

- This peak is completely washed out by ISR, beamstrahlung and beamenergy-spread
- However uncertainties in beam parameters do not effect precision of $m_{\rm t}$ measurement

Additional information:

- absolute value of the $t\bar{t}$ cross section: sensitive to α_s, Γ_t
- Momentum distribution of top quarks near threshold sensitive to $m_{\rm t}$
- Forward backward asymmetry: sensitive to Γ_t
- Can try multi-parameter fits

Results (10 scan points with $\mathcal{L} = 30 \,\mathrm{fb}^{-1}$ each):

 $\Delta m_{\rm t} = 34 \,{\rm MeV}$ $\Delta \Gamma_{\rm t} = 42 \,{\rm MeV}$ $\Delta \alpha_s = 0.0023$

One step further:

The absolute value of the cross section is also sensitive to the Ht Yukawa coupling (y_t)

 \Rightarrow can take α_s from other measurements and fit y_t instead

Result:

$$\frac{\Delta y_t}{y_t} = \frac{+0.35}{-0.65}$$

for a 3-parameter fit

(LHC: $\Delta m_{\rm t} \approx \pm 1.5 \,{\rm GeV}$)

$t\bar{t}Z$ couplings

- the top-couplings to the Z can be obtained from tt-production in the continuum
- due to the interference between Z and γ exchange the total cross section and the left-right asymmetry are sensitive to the Z-couplings
- a very conservative analysis at $\sqrt{s} = 400 \,\text{GeV}$ gives 90% c.l. limits on the 10% level for anomalous couplings

• this precision is sensitive to some ETC-models

Wtb couplings

• effective Lagrangian:

$$\mathcal{L} = \frac{g}{\sqrt{2}} \left[W_{\mu}^{-} \bar{b} (\gamma_{\mu} f_{1L} P_{-} + \gamma_{\mu} f_{1R} P_{+}) t - \frac{1}{2M_{W}} W_{\mu\nu} \bar{b} \sigma^{\mu\nu} (f_{2R} P_{-} + f_{2L} P_{+}) t \right] + \text{h.c.}$$

 $(P_{\pm} = 1/2(1 \pm \gamma_5) \text{ SM: } f_{1L} = 1, \text{ rest}=0$

- Present data put tight constraints on f_{1L} , f_{1R} , so try to measure f_{2L} , f_{2R}
- use $e^+e^- \to t\bar{t} \to X\ell\nu$ at $\sqrt{s} = 500 \,\text{GeV}$ and assume $t\bar{t}Z$ -vertex to be standard
- analyze A_{FB}^b , A_{FB}^ℓ and lepton energy in top rest frame
- results: $\Delta f_{2L} \approx 0.02, \ \Delta f_{2R} \approx 0.2$

Conclusions on top-quark physics

- \bullet The $t\bar{t}$ threshold seems theoretically well under control
- The top quark mass can be measured to ~ 50 MeV which is more than one order of magnitude better than what LHC can do
- \bullet the top width can be measured on the 3% level in the threshold scan
- the LC is the unique place to test tTZ-couplings and can do that with a precision to better than 10%
- for t-decay physics probably the LHC is better due to much higher statistics