

- The Higgs-mechanism is the only way we know to give masses to particles in the SM
- Up to now we have no direct evidence for any Higgs-particle
- If the Higgs exists, at least the LHC should have found a particle compatible with it,
- The LC has then to prove that this is really the particle responsible for mass generation

Predictions for the Higgs

Standard Model:

• One complex Higgs doublet
$$\begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$$
 with vacuum expectation value $\begin{pmatrix} 0 \\ v \end{pmatrix}$, $v = 246$ GeV.

- Higgs potential $V(\Phi) = \lambda (\Phi^* \Phi v^2/2)^2$
- Higgs mass $m_{\rm H}^2 = 2\lambda v^2$

• Partial widths:

$$\begin{split} \Gamma(H \to \mathrm{f}\bar{\mathrm{f}}) &= \frac{N_c^{(f)} G_{\mu}}{4\sqrt{2}\pi} m_f^2(m_H) m_H (1 + \delta_{QCD}^{(f)}) \\ \Gamma(H \to VV) &= \frac{3G_{\mu}^2 m_Z^4}{16\pi^3} m_{\mathrm{H}} R_V (m_V^2/m_{\mathrm{H}}^2) \\ &\to 2(1) \frac{\sqrt{2}G_{\mu}}{32\pi} m_{\mathrm{H}}^3 \quad [V = W(Z)] \end{split}$$

Limits on $m_{\rm H}$

- direct searches at LEP: $m_{\rm H} > 114 \,{\rm GeV}$
- hint of a signal at $m_{\rm H} \approx 115 \,{\rm GeV}$
- electroweak precision data

 $\Rightarrow m_{\rm H} < 200 \,{\rm GeV} \quad (95\% {\rm c.l.})$

• perturbativity and vacuum stability if SM valid up to M_{pl} : $m_{\rm H} \sim 120 - 180 \,{\rm GeV}$

- cross section $\sim 100(\sim 10)$ fb for
- $m_{\rm H} = 120(500)\,{\rm GeV}$
- $few \times 10^4 (10^3)$ Higgses per year

MSSM:

SUSY needs two Higgs-doublets (H_1, H_2) to generate masses of down- and up-type particles

Physical particles:

$$h = H_2 \cos \alpha - H_1 \sin \alpha$$

$$H = H_2 \sin \alpha + H_1 \cos \alpha$$

$$A \quad CP - odd$$

$$H^{\pm} \quad charged Higgses$$

Define $\tan\beta=\frac{v_2}{v_1}=$ ratio of expectation values $(v_1^2+v_2^2=v_{SM}^2)$

Born Formulae:

$$\begin{split} m_{h,H}^2 &= \frac{1}{2} \left[m_A^2 + m_Z^2 \mp \\ & \sqrt{\left(m_A^2 + m_Z^2 \right)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta} \right] \\ m_h &< m_Z \\ m_H &> m_Z \\ m_H^2 &= m_A^2 + m_W^2 \\ \tan 2\alpha &= \tan 2\beta \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2} \left(-\frac{\pi}{2} < \alpha < 0 < \beta < \frac{\pi}{2} \right) \end{split}$$

Higgs sector described by two free parameters

However large radiative corrections:

- shift of m_h up to $\sim 130 \,\mathrm{GeV}$
- prediction gets dependent on other SUSY parameters, especially on mixing in stop sector
- strong dependence on top mass: $\Delta m_h / \Delta m_t \approx 1$

Currently allowed region:

$\tan \beta > 2$ preferred!

Complementarity of cross sections:

$$\sigma(e^+e^- \to Zh) = \sin^2(\beta - \alpha)\sigma_{SM}$$

$$\sigma(e^+e^- \to Ah) = \cos^2(\beta - \alpha)\bar{\lambda}\sigma_{SM}$$

 $(\bar{\lambda}: \text{P-wave suppression})$

If m_A large:

•
$$\beta - \alpha = \pi/2 \implies \sigma(e^+e^- \to Zh) = \sigma_{SM}$$

- $m_H \approx m_{H^{\pm}} \approx m_A$
- \Longrightarrow Only one SM-like Higgs can be seen

Branching ratios:

$$\Gamma(h \to U\overline{U}) = \frac{\cos^2 \alpha}{\sin^2 \beta} \Gamma_{\rm SM}(h \to U\overline{U})$$

$$\Gamma(h \to D\overline{D}) = \frac{\sin^2 \alpha}{\cos^2 \beta} \Gamma_{\rm SM}(h \to D\overline{D})$$

- \bullet For m_A large also branching ratios become SM like
- however, it turns out that some sensitivity remains in regions where no other Higgs than h can be seen

LHC discovery of the Higgs

A SM-like Higgs cannot be missed by the LHC

The task of the LC is then precision measurements

Measurement of the H quantum numbers

After the H has been discovered it has to be proven that its quantum numbers are really 0^+

At the LC this can be done with a threshold scan of $e^+e^- \rightarrow ZH$:

• Large sensitivity to the different states

- The few remaining ambiguities can be resolved from angular dependences and the observation of $H \to \gamma \gamma$
- Alternatively spin/parity can be measured in transverse/longitudinally polarized $\gamma\gamma$ -collisions

What can the LHC do on J,P?

- $H \to \gamma \gamma$ excludes J=1
- if $H \to ZZ$ is visible S should be measurable from spin correlations

The Higgs CP quantum numbers

 Angular distributions give admixture of CP odd Higgs |η|
 LC: 3%
 LHC: 30%

 However CP-odd Higgs doesn't couple to vector boson pairs directly

 → η =mixing angle × loop factor
 might not be visible

- Alternative: $\gamma\gamma$ collisions:
 - Use linear beam polarization $\vec{\varepsilon_1}, \vec{\varepsilon_2}$
 - CP-even Higgs: $\sigma \propto \vec{\varepsilon_1} \cdot \vec{\varepsilon_2}$
 - CP-odd Higgs: $\sigma \propto [\vec{\varepsilon_1} \times \vec{\varepsilon_2}] \cdot \vec{k_{\gamma}}$
 - Coupling strength roughly equal
 - Asymmetry measures CP-even CP-odd mixture
 - Problem: transverse beam polarization large for small $\mathbf{x} \to \text{small } \sqrt{s}$

- $\Rightarrow \text{fine for small } m_H, \text{ difficult for large } m_H \text{ (heavy SUSY Higgses)}$
 - $-f_{CP} < 0.2$ at 95% C.L. might be possible for $m_H = 120\,{\rm GeV}$

Measurement of the $e^+e^- \rightarrow HZ$ cross section

Need a measurement of the total cross section $\sigma(e^+e^- \rightarrow HZ)$ independent of the H decay mode:

• $\sigma(e^+e^- \rightarrow HZ)$ measures $\Gamma(H \rightarrow ZZ)$

• absolute normalization for H-branching ratio measurements

Method

- select HZ events with $Z \to e^+e^-$, $\mu^+\mu^-$ only by looking at the leptons cutting on $m_{\ell\ell} \sim m_Z$
- efficiency (almost) independent of H-decay mode

- \bullet fit recoil mass distribution
- Higgs signal clearly visible with some tails from ISR and beamstrahlung

Recoil Mass [GeV]

• Results: $(\sqrt{s} = 350 \,\text{GeV}, \,\mathcal{L} = 500 \,\text{fb}^{-1}, \,\text{m}_{\text{H}} \sim 120 \,\text{GeV})$ $\Delta \sigma(\text{e}^+\text{e}^- \rightarrow \text{HZ}) \approx 2.4\%$ $\Delta m_{\text{H}} \approx 140 \,\text{MeV}$

Measurement of $m_{\rm H}$

- from Z recoil mass: $\Delta m_{\rm H} \approx 140 \,{\rm MeV}$
- alternative: constrained fit similar to $m_{\rm W}$ at LEP:
 - -Analysis with $m_{\rm H} = 120 \,{\rm GeV}, \, \mathcal{L} = 500 \,{\rm fb}^{-1}$
 - -Select $e^+e^- \rightarrow HZ$ -events
 - perform constrained fit imposing energy/momentum conservation and taking into account ISR/beamstrahlung

- $-\Delta m_{\rm H} \approx 50 \,\mathrm{MeV} \text{ for } \mathcal{L} = 500 \,\mathrm{fb}^{-1}$ combined with HZ $\rightarrow \ell\ell b\bar{b} : \Delta m_{\rm H} \approx 40 \,\mathrm{MeV}$
- For larger $m_{\rm H}$ precision stays at 0.05% level using recoil mass and fit to ZH $\rightarrow q\bar{q}W^+W^$ mass distribution

Comparison of Higgs-mass determination at LC and LHC

- recoil-mass method similar to LHC over the full mass range
- direct reconstruction with $H \rightarrow b\bar{b}$ superior at low $m_{\rm H}$ needs to be tried with $H \rightarrow WW, ZZ$ at higher masses
- threshold scan not yet explored

How well do we need to know $m_{\rm H}$

- SM: dependence of precision observables on $m_{\rm H}$ only logarithmic $\Rightarrow \Delta m_{\rm H} \sim 1 \,\text{GeV}$ largely sufficient
- Beyond SM, e.g. SUSY: $m_{\rm H}$ connected with fundamental parameters of the theory \Rightarrow need $m_{\rm H}$ as good as possible However:
 - -large radiative corrections from top-sector $(\delta m_{\rm H}/\delta m_{\rm t} \approx 1)$
 - Top mass error might be limiting factor

Measurement of the Higgs branching ratios

- absolute branching ratios can be measured from the $Z \to \ell \ell$ sample
- ratios of branching ratios can also be obtained from other channels
- different 2-jet modes can be separated by btagging

Results: $(\sqrt{s} = 350 \,\text{GeV}, \,\mathcal{L} = 500 \,\text{pb}^{-1})$

$m_{\rm H} = 120 \,{\rm GeV}$:

Channel	$\delta(BR(H\to X)/BR$
$H^0/h^0 \to b\bar{b}$	± 0.024
$H^0/h^0 \to c \bar{c}$	± 0.083
$H^0/h^0 ightarrow gg$	± 0.055
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050
$H^0/h^0 \to WW^*$	± 0.051

LHC results on branching ratios

LHC can measure Higgs decays into several channels \Rightarrow direct measurement of ratios of partial widths

width ratios

To get partial width the LHC always needs as sumptions $(b-\tau \text{ universality}!!)$

Even with these assumptions it is about a factor 4 worse than LC

The total width of the Higgs

For $m_{\rm H} < 2m_{\rm W}$

$$BR(H \to X\bar{X}) = \Gamma(H \to X\bar{X})/\Gamma_{\rm H}$$

$$\sigma(e^+e^- \to {\rm HZ}) \propto \Gamma(H \to ZZ)$$

$$\sigma({\rm W}^+{\rm W}^- \to {\rm H}) \propto \Gamma({\rm H} \to {\rm W}^+{\rm W}^-)$$

Assuming SU(2) invariance for the Higgs couplings:

$$\Gamma_{\rm H} \propto \frac{\sigma({\rm e^+e^-} \rightarrow {\rm HZ})}{BR({\rm H} \rightarrow {\rm W^+W^-})}$$

➡ Can obtain Higgs width with $\Delta\Gamma_{\rm H}/\Gamma_{\rm H} < 6\%$ up to $m_{\rm H} \sim 180 \,{\rm GeV}$

Drop assumption of SU(2) invariance

► Have to measure Higgs-fusion cross section

<u>Measurement of $e^+e^- \rightarrow \nu\nu H \rightarrow \nu\nu b\bar{b}$ </u>

• $e^+e^- \rightarrow \nu\nu$ H $\rightarrow \nu\nu$ bb events are selected using b-tag, $m_{\rm rec}$, $m_{\rm miss}$ and $E_{\rm miss}$

- $e^+e^- \rightarrow ZH$ with $Z \rightarrow \nu\nu$ and WW $\rightarrow H$ are separated by a fit to the missing mass distribution
- for $m_{\rm H} < 140 \,{\rm GeV}\ \Gamma_{\rm H}$ can be determined with similar accuracy without any assumptions
- for $m_{\rm H} > 140 \,{\rm GeV}$ the necessary analysis of of $e^+e^- \rightarrow \nu\nu {\rm H} \rightarrow \nu\nu {\rm WW}$ is not yet done

Indirect $\Gamma_{\rm H}$ at LHC:

- \bullet LHC can do an indirect measurement of $\Gamma_{\rm H}$ with 20% precision
- however several assumptions are needed for that
 - $-\,\mathrm{b}\text{-}\tau$ universality
 - -W-Z universality
 - no unexpected H-decays

The Higgs width for $m_{\rm H} > 2m_{\rm W}$

- \bullet For $m_{\rm H}>2m_{\rm W}$ the Higgs becomes very wide $(\Gamma_{\rm H}\propto m_{\rm H}^3)$
- $\Longrightarrow \Gamma_{\mathrm{H}}$ can be fitted from the resonance curve

• example
$$m_{\rm H} = 240 \,{\rm GeV}$$

-LHC:
$$\Delta \Gamma_{\rm H} / \Gamma_{\rm H} = 25\%$$

$$-LC : \Delta \Gamma_{\rm H} / \Gamma_{\rm H} = 10\%$$

improving with $m_{\rm H}$

Interpretation in the MSSM:

$$m_A \gg m_Z \Rightarrow \beta - \alpha = \pi/2 - \eta$$
 with
 $\eta = \frac{m_Z^2 |\cos 2\beta|}{m_A^2} \sin 2\beta$

$$\Rightarrow \frac{\sin^2 \alpha}{\cos^2 \beta} = 1 - 2\eta \tan \beta$$
$$\sin^2(\beta - \alpha) = 1 - \eta^2$$
$$\frac{\cos^2 \alpha}{\sin^2 \beta} = 1 + 2\eta / \tan \beta$$

In addition for large m_A :

$$\eta \tan \beta = -\frac{m_Z^2 |\cos 2\beta| + m_h^2}{m_A^2}$$

For $\tan \beta > 2$ (suggested by LEP) $|\cos 2\beta| \approx 1$

$$\Rightarrow \eta \tan \beta = -\frac{m_Z^2 + m_h^2}{m_A^2}$$
 independent of $\tan \beta$

- $BR(h \rightarrow b\bar{b})/BR(h \rightarrow W^+W^-)$ sensitive to m_A
- Effects on $BR(h \rightarrow c\bar{c})$ suppressed by $1/\tan\beta$ and knowledge of m_c

Quantitatively:

Determination of Higgs couplings

Measurement of Higgs BRs and total width allows determination of Higgs couplings:

$$\begin{split} \Gamma(\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}) \; = \; & \mathrm{BR}(\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}) \cdot \Gamma_{\mathrm{H}} \\ & \propto \; g_{\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}}^2 \end{split}$$

Couplings are obtained from a fit to all related measurements

Model independent Higgs couplings can be compared to model predictions

Measurement of $\Gamma(H \to \gamma \gamma)$

- $H \rightarrow \gamma \gamma$ is loop induced process sensitive to couplings of heavy particles to the Higgs (e.g. stop heavier than 250GeV can give effects of > 10%)
- $BR(H \rightarrow \gamma \gamma)$ can be measured to ~ 10 15%for $m_{\rm H} = 120$ GeV, rapidly getting worse when Γ_H increases

Alternative: measure $\sigma(\gamma\gamma \rightarrow H)$ in photon-collider

• cross section for
$$\sqrt{s_{\gamma\gamma}} = m_{\rm H}$$
:
 $\sigma(\gamma\gamma \to {\rm H} \to {\rm X}) = \frac{4\pi^2}{m_{\rm H}^3}\Gamma({\rm H} \to \gamma\gamma)\cdot{\rm BR}({\rm H} \to {\rm X})(1+\lambda_1\lambda_2)$
 $(\lambda_i = {\rm helicity \ of \ photon \ }i)$

- $m_{\rm H}$ is already known when measurement is done \Rightarrow can tune $\gamma\gamma$ energy (peak of dist.) to $m_{\rm H}$
- \bullet analysis up to now done for light Higgs with H \rightarrow $\rm b\bar{b}$

- background more concentrated at lower masses

apply mass cuts

- $-\operatorname{suppress}$ light quarks completely and $c\overline{c}$ by factor 20 using b-tagging
- final purity ~ 40% with bb- and cc-background about equal
- for $\mathcal{L}_{\gamma\gamma}(0 < z < z_{\max}) = 150 \,\mathrm{fb}^{-1}$ corresponding to $\mathcal{L}_{\gamma\gamma}(0.65 < z < z_{\max}) = 43 \,\mathrm{fb}^{-1}$ corresponding to $\mathcal{L}_{ee} = 200 \,\mathrm{fb}^{-1}$ about 8000 signal events are selected

$$\frac{\Delta\Gamma(H\to\gamma\gamma)BR(H\to b\bar{b})}{\Gamma(H\to\gamma\gamma)BR(H\to b\bar{b})} \approx 2\%$$

$$= \text{with } \Delta BR(H\to b\bar{b}) = 2.4\%: \frac{\Delta\Gamma(H\to\gamma\gamma)}{\Gamma(H\to\gamma\gamma)} \approx 3\%$$

Measurement of the Higgs self-couplings

- Higgs potential $V(\Phi) = \lambda (\Phi^* \Phi v^2/2)^2$
- Inside the SM completely known once $m_{\rm H}$ is measured
- Have to reconstruct the Higgs potential as much as possible to prove that the Higgs is really responsible for electroweak symmetry breaking
- trilinear Higgs coupling: $\lambda_{\text{HHH}} = 3m_{\text{H}}^2/m_{\text{Z}}^2\lambda_0, \ \lambda_0 = m_{\text{Z}}^2/v$
- quadrilinear Higgs coupling: $\lambda_{\rm HHHH} = 3m_{\rm H}^2/m_Z^4\lambda_0$
- trilinear coupling can be seen at LC, quadrilinear coupling too small

Processes for $e^+e^- \rightarrow ZHH$:

Cross section and sensitivity to λ_{HHH} :

For a light Higgs it should be possible to establish Higgs-self-coupling with $\sqrt{s} = 500 \,\text{GeV}$ and several hundred fb⁻¹ luminosity

For heavier Higgses WW fusion can take over

Situation more complicated in SUSY

(hAA, HAA couplings generally small) Has to be folded with Zhh (ZHH) coupling (SM: $\lambda \approx 5$)

Some effects should remain visible

- Experimental SM analysis exists
- SUSY analysis to be done

Experimental analysis of HHH-coupling

- Assume $\sqrt{s} = 500 \,\text{GeV}, \, \mathcal{L} = 500 \,\text{fb}^{-1}, \, m_{\text{H}} = 100 \,\text{GeV}$
- Signal $e^+e^- \rightarrow ZHH \rightarrow b\bar{b}b\bar{b}f\bar{f} \sigma \sim 0.5 \,fb$
- Background: after preselection $\sim 500 \times \text{signal}$ (WW, Z γ , ZZ, WWZ, ZZZ, hZ)

• Key: b-tagging

 $\rightarrow \Delta \lambda / \lambda \approx 0.2$ is possible

The Htt-Yukawa coupling

- If the Higgs is responsible for mass generation its couplings should be proportional to the particle mass
- The couplings HZZ, HWW are known from the cross sections $e^+e^- \rightarrow ZH$ and $WW \rightarrow H$
- The Yukawa couplings Hbb, Hcc, H $\tau^+\tau^-$ can be obtained from the partial decay widths
- The top-Yukawa coupling is especially interesting since $g_{\rm ttH} \sim 1$ and the top-quark plays a special role in some theories
- A ~ 35% estimate of the top-Yukawa coupling can be obtained from the tt¯-threshold scan
- \bullet The top-Yukawa coupling can be measured from $t\bar{t}H\text{-}$ events

Cross section:

Event signatures: $t\bar{t}H \rightarrow WbWbb\bar{b} \rightarrow 4q4b, 2q\ell\nu4b$ $(2(\ell\nu) \text{ events and H decays not to }b\bar{b} \text{ are not con$ $sidered})$

Assumptions: $\sqrt{s} = 800 \text{ GeV}, \ \mathcal{L} = 1000 \text{ fb}^{-1}, \ m_{\text{H}} = 120 \text{ GeV}$

Example: $2q\ell\nu 4b$ analysis

- start with preselection cuts, mainly to separate "round" from "jetty" events
- after preselection

Signal ($\varepsilon = 54\%$)	$0.61\mathrm{fb}$
Most dangerous backgrounds:	
$t\overline{t}$	$10.97\mathrm{fb}$
WW	$4.05\mathrm{fb}$
Total background:	$17.59\mathrm{fb}$

Process events with neural network including event shapes, b-tagging, lepton-id

Results:

- Can achieve S/B = 0.5 with $\varepsilon = 27\%$
- $\implies \Delta g_{\rm ttH} = \pm 5.1\% ({\rm stat}) \pm 3.8\% ({\rm syst}) \text{ for } 5\% \text{ error}$ on background normalization
 - slightly worse results in fully hadronic channel
 - total error of $\Delta g_{ttH} = \pm 5.5\%$ seems possible
 - ~ factor 3 better than LHC

Masses of Higgs bosons:

If A heavy $(m_A > 200 \text{ GeV})$:

Charged Higgses can be detected, independent of the decay mode up to $\sim 80\%\sqrt{s}/2$ with low luminosity:

$\gamma\gamma$ collider

- Higgses are produced singly
- $\sqrt{s_{max}} \approx 0.8 \sqrt{s_{ee}}$
- \bullet can see H,A up to 650 GeV for $\sqrt{s}_{ee} = 800 \, {\rm GeV}$

Heavy SUSY Higgses at LHC

- \bullet LHC results are very dependent on $\tan\beta$
- $\tan \beta$ small: (almost) excluded by LEP \rightarrow ignore
- tan β large: H,A-Strahlung off b-quark largely enhanced
 m→ can see H,A in b b τ⁺τ⁻ events up to fairly high masses
- $\tan \beta$ moderate: "wedge region" no heavy Higgses seen (however there are chances if the Higgses decay into SUSY particles)

Summary Higgs physics

- A SM-like Higgs definitely will be discovered at LHC
- If a Higgs exists in the LC energy range, it will be seen
- The task of the LC will be to measure the properties of the Higgs and to show that it is really responsible for electroweak symmetry breaking.
- The present analyzes mostly assume a light Higgs, for a heavier Higgs they have to be redone replacing a bb-pair by a W-pair.
- The Higgs-mass can be measured to $\approx 50 \,\mathrm{MeV}$
- The Higgs couplings to heavier fermions and to gauge bosons can be measured at the few percent level
- \bullet The trilinear Higgs-coupling can be established on the 20% level
- Not covered here: One can construct exotic models, where the LHC doesn't see the Higgs, but the LC still can