
➍ Higgs-physics

• The Higgs-mechanism is the only way we know to
give masses to particles in the SM

• Up to now we have no direct evidence for any
Higgs-particle

• If the Higgs exists, at least the LHC should have
found a particle compatible with it,

• The LC has then to prove that this is really the
particle responsible for mass generation

Predictions for the Higgs

Standard Model:

• One complex Higgs doublet
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, v = 246 GeV.

• Higgs potential V (Φ) = λ(Φ∗Φ − v2/2)2

• Higgs mass m2
H = 2λv2
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• Partial widths:

Γ(H → ff) =
N
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c Gµ
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Limits on mH

• direct searches at LEP: mH > 114 GeV

• hint of a signal at mH ≈ 115 GeV

• electroweak precision data
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Without NuTeV

theory uncertainty

⇒ mH < 200 GeV (95%c.l.)

• perturbativity and vacuum stability if SM valid
up to Mpl: mH ∼ 120 − 180 GeV
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Higgs production

Higgsstrahlung W-fusion
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• both channels accessible at LC

• cross section ∼ 100(∼ 10) fb for
mH = 120(500) GeV

➧ few×104(103) Higgses per year
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MSSM:

SUSY needs two Higgs-doublets (H1, H2) to gener-
ate masses of down- and up-type particles

Physical particles:

h = H2 cos α − H1 sin α

H = H2 sin α + H1 cos α

A CP − odd

H± charged Higgses

Define tan β = v2
v1

= ratio of expectation values

(v2
1 + v2

2 = v2
SM )

Born Formulae:
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Higgs sector described by two free parameters
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However large radiative corrections:

• shift of mh up to ∼ 130 GeV

• prediction gets dependent on other SUSY param-
eters, especially on mixing in stop sector

• strong dependence on top mass: ∆mh/∆mt ≈ 1

Currently allowed region:
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tan β > 2 preferred!
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Complementarity of cross sections:

σ(e+e− → Zh) = sin2(β − α)σSM

σ(e+e− → Ah) = cos2(β − α)λ̄σSM

(λ̄: P-wave suppression)

If mA large:

• β − α = π/2 ⇒ σ(e+e− → Zh) = σSM

•mH ≈ mH± ≈ mA

➟ Only one SM-like Higgs can be seen

Branching ratios:

Γ(h → UU) =
cos2 α

sin2 β
ΓSM(h → UU)

Γ(h → DD) =
sin2 α

cos2 β
ΓSM(h → DD)

• For mA large also branching ratios become SM
like

• however, it turns out that some sensitivity re-
mains in regions where no other Higgs than h can
be seen
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LHC discovery of the Higgs

A SM-like Higgs cannot be missed by the LHC
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ATLAS

The task of the LC is then precision measurements
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Measurement of the H quantum numbers

After the H has been discovered it has to be proven
that its quantum numbers are really 0+

At the LC this can be done with a threshold scan of
e+e− → ZH:
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• Large sensitivity to the different states

• The few remaining ambiguities can be resolved
from angular dependences and the observation of
H → γγ

• Alternatively spin/parity can be measured in
transverse/longitudinally polarized γγ-collisions
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What can the LHC do on J,P?

•H → γγ excludes J=1

• if H → ZZ is visible S should be measurable
from spin correlations

The Higgs CP quantum numbers

• Angular distributions give admixture of CP odd
Higgs |η|
LC: 3%
LHC: 30%

00.20.40.60.81

-1 -0.5 0 0.5 1

(1=�)d�=dcos� ps = 500 GeVMH = 120 GeV
cos�

e+e� ! ZHe+e� ! ZAe+e� ! ZZ
• However CP-odd Higgs doesn’t couple to vector

boson pairs directly
→ η =mixing angle × loop factor
➟ might not be visible
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• Alternative: γγ collisions:

– Use linear beam polarization ~ε1, ~ε2

– CP-even Higgs: σ ∝ ~ε1 · ~ε2

– CP-odd Higgs: σ ∝ [~ε1 × ~ε2] · ~kγ

– Coupling strength roughly equal

– Asymmetry measures CP-even - CP-odd mix-
ture

– Problem: transverse beam polarization large
for small x → small

√
s

lγ
Pl = 1
(⇒ Pc = 0)
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⇒ fine for small mH , difficult for large mH (heavy
SUSY Higgses)

– fCP < 0.2 at 95% C.L. might be possible for
mH = 120 GeV

Milano, March 03 Higgs-physics-12 Klaus Mönig



Measurement of the e+e− → HZ cross section

Need a measurement of the total cross section
σ(e+e− → HZ) independent of the H decay mode:

• σ(e+e− → HZ) measures Γ(H → ZZ)

• absolute normalization for H-branching ratio
measurements

Method

• select HZ events with Z → e+e−, µ+µ− only by
looking at the leptons cutting on mℓℓ ∼ mZ

• efficiency (almost) independent of H-decay mode

ee
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WW
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γZ
ZZ

Hinv
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Efficiency  (%)

45 50

mH = 120 GeV 150 GeV 180 GeV

Z → e+e−
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• fit recoil mass distribution

• Higgs signal clearly visible with some tails from
ISR and beamstrahlung

0

25

50

75

100

100 120 140 160

Recoil Mass  [GeV]

N
um

be
r 

of
 E

ve
nt

s 
/ 0

.5
 G

eV

Data

Z H → ee X

m H  =  120  GeV

• Results:
(
√

s = 350 GeV, L = 500 fb−1, mH ∼ 120 GeV)

∆σ(e+e− → HZ) ≈ 2.4%

∆mH ≈ 140 MeV
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Measurement of mH

• from Z recoil mass: ∆mH ≈ 140 MeV

• alternative: constrained fit similar to mW at LEP:

– Analysis with mH = 120 GeV, L = 500 fb−1

– Select e+e− → HZ-events

– perform constrained fit imposing energy/mo-
mentum conservation and taking into account
ISR/beamstrahlung

– ∆mH ≈ 50 MeV for L = 500 fb−1

combined with HZ → ℓℓbb̄ : ∆mH ≈ 40 MeV

– For larger mH precision stays at 0.05% level
using recoil mass and fit to ZH → qq̄W+W−

mass distribution
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Comparison of Higgs-mass determination at LC and
LHC
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➍ LC500: Lint = 5⋅105 pb-1 bbqq

➍

• recoil-mass method similar to LHC over the full
mass range

• direct reconstruction with H → bb̄ superior at
low mH
needs to be tried with H → WW,ZZ at higher
masses

• threshold scan not yet explored
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How well do we need to know mH

• SM: dependence of precision observables on mH
only logarithmic
⇒ ∆mH ∼ 1 GeV largely sufficient

• Beyond SM, e.g. SUSY: mH connected with fun-
damental parameters of the theory
⇒ need mH as good as possible
However:

– large radiative corrections from top-sector
(δmH/δmt ≈ 1)

➟ Top mass error might be limiting factor

Milano, March 03 Higgs-physics-17 Klaus Mönig



Measurement of the Higgs branching ratios

• absolute branching ratios can be measured from
the Z → ℓℓ sample

• ratios of branching ratios can also be obtained
from other channels

• different 2-jet modes can be separated by b-
tagging

light Quark Tag       c Quark Tag          b Quark Tag
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H → bb̄

H → cc̄

H → gg
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Results: (
√

s = 350 GeV, L = 500 pb−1)
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S
M

 H
ig

gs
 B

ra
nc

hi
ng

 R
at

io

10
-2

10
-1

1

100 110 120 130 140 150

mH = 120 GeV:

Channel δ(BR(H → X)/BR

H0/h0 → bb̄ ±0.024

H0/h0 → cc̄ ±0.083

H0/h0 → gg ±0.055

H0/h0 → τ+τ− ±0.050

H0/h0 → WW ∗ ±0.051
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LHC results on branching ratios

LHC can measure Higgs decays into several channels
⇒ direct measurement of ratios of partial widths

To get partial width the LHC always needs assump-
tions (b − τ universality!!)

Even with these assumptions it is about a factor 4
worse than LC
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The total width of the Higgs

For mH < 2mW

BR(H → XX̄) = Γ(H → XX̄)/ΓH

σ(e+e− → HZ) ∝ Γ(H → ZZ)

σ(W+W− → H) ∝ Γ(H → W+W−)

Assuming SU(2) invariance for the Higgs couplings:

ΓH ∝ σ(e+e− → HZ)

BR(H → W+W−)

➠ Can obtain Higgs width with ∆ΓH/ΓH < 6% up
to mH ∼ 180 GeV

Drop assumption of SU(2) invariance

➼ Have to measure Higgs-fusion cross section
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Measurement of e+e− → ννH → ννbb̄

• e+e− → ννH → ννbb̄ events are selected using
b-tag, mrec, mmiss and Emiss

• e+e− → ZH with Z → νν and WW → H are
separated by a fit to the missing mass distribution

• for mH < 140 GeV ΓH can be determined with
similar accuracy without any assumptions

• for mH > 140 GeV the necessary analysis of of
e+e− → ννH → ννWW is not yet done
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Indirect ΓH at LHC:

• LHC can do an indirect measurement of ΓH with
20% precision

• however several assumptions are needed for that

– b-τ universality

– W-Z universality

– no unexpected H-decays

The Higgs width for mH > 2mW

• For mH > 2mW the Higgs becomes very wide
(ΓH ∝ m3

H)

➟ ΓH can be fitted from the resonance curve

• example mH = 240 GeV

– LHC: ∆ΓH/ΓH = 25%

– LC : ∆ΓH/ΓH = 10%

improving with mH
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Interpretation in the MSSM:

mA ≫ mZ ⇒ β − α = π/2 − η with

η =
m2

Z| cos 2β|
m2

A
sin 2β

⇒ sin2 α

cos2 β
= 1 − 2η tan β

sin2(β − α) = 1 − η2

cos2 α

sin2 β
= 1 + 2η/ tan β

In addition for large mA:

η tan β = −m2
Z| cos 2β| + m2

h

m2
A

For tan β > 2 (suggested by LEP) | cos 2β| ≈ 1

⇒ η tan β = −m2
Z+m2

h
m2

A
independent of tan β

•BR(h → bb̄)/BR(h → W+W−) sensitive to
mA

• Effects on BR(h → cc̄) suppressed by 1/ tan β
and knowledge of mc
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Quantitatively:
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Determination of Higgs couplings

Measurement of Higgs BRs and total width allows
determination of Higgs couplings:

Γ(H → XX) = BR(H → XX) · ΓH

∝ g2
H→XX

Couplings are obtained from a fit to all related mea-
surements

Model independent Higgs couplings can be com-
pared to model predictions
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Measurement of Γ(H → γγ)

•H → γγ is loop induced process sensitive to cou-
plings of heavy particles to the Higgs
(e.g. stop heavier than 250GeV can give effects of
> 10%)

•BR(H → γγ) can be measured to ∼ 10 − 15%
for mH = 120 GeV, rapidly getting worse when
ΓH increases

Alternative: measure σ(γγ → H) in photon-collider

• cross section for
√

sγγ = mH:

σ(γγ → H → X) =
4π2

m3
H

Γ(H → γγ)·BR(H → X)(1+λ1λ2)

(λi = helicity of photon i)

•mH is already known when measurement is done
⇒ can tune γγ energy (peak of dist.) to mH

• analysis up to now done for light Higgs with H →
bb̄
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Can adjust polarization to be mainly Jz = 0

• signal cross section ∼ 0.1 pb

• background: QED γγ → qq̄

– cross section ∝ Q4
q ⇒ b’s suppressed

– Jz = 0 cross section suppressed by m2
q/s, how-

ever ∼ 100% QCD corrections

– total background from Jz = 0, 2 ∼ equal

– background strongly forward peaked
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– background more concentrated at lower masses
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apply mass cuts

– suppress light quarks completely and cc̄ by fac-
tor 20 using b-tagging

• final purity ∼ 40% with bb̄- and cc̄-background
about equal

• for Lγγ(0 < z < zmax) = 150 fb−1 corresponding

to Lγγ(0.65 < z < zmax) = 43 fb−1 correspond-

ing to Lee = 200 fb−1 about 8000 signal events
are selected

➼ ∆Γ(H→γγ)BR(H→bb̄)
Γ(H→γγ)BR(H→bb̄)

≈ 2%

➼ with ∆BR(H → bb̄) = 2.4%: ∆Γ(H→γγ)
Γ(H→γγ) ≈ 3%
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Measurement of the Higgs self-couplings

• Higgs potential V (Φ) = λ(Φ∗Φ − v2/2)2

• Inside the SM completely known once mH is mea-
sured

• Have to reconstruct the Higgs potential as much
as possible to prove that the Higgs is really re-
sponsible for electroweak symmetry breaking

• trilinear Higgs coupling:
λHHH = 3m2

H/m2
Zλ0, λ0 = m2

Z/v

• quadrilinear Higgs coupling:
λHHHH = 3m2

H/m4
Zλ0

• trilinear coupling can be seen at LC, quadrilinear
coupling too small

Processes for e+e− → ZHH :

Z

H

H

H

H
Z Z

H

H
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Cross section and sensitivity to λHHH:
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SM: e+ e- → ZHH
MH = 110 GeV
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∆λ/λ=0.2
●

λHHH = κ(λHHH)SM

For a light Higgs it should be possible to establish
Higgs-self-coupling with

√
s = 500 GeV and several

hundred fb−1 luminosity

For heavier Higgses WW fusion can take over
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Situation more complicated in SUSY
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(hAA, HAA couplings generally small)

Has to be folded with Zhh (ZHH) coupling

(SM: λ ≈ 5)
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Some effects should remain visible
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H → hh

• Experimental SM analysis exists

• SUSY analysis to be done

Experimental analysis of HHH-coupling

• Assume
√

s = 500 GeV, L = 500 fb−1,
mH = 100 GeV

• Signal e+e− → ZHH → bb̄bb̄ff σ ∼ 0.5 fb

• Background: after preselection ∼ 500×signal
(WW, Zγ, ZZ, WWZ, ZZZ, hZ)
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• Key: b-tagging

Combined b-tagging variable (from 6 jets)

btag(hhZ)
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• plus topological cuts after constrained fit

D =
√
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• final efficiency ε = 15% with S/B ∼ 1

• final backgrounds mainly Z(γ), WW, ZZ, ZZZ;
75% with one Z → t̄t or W → tb

➟ ∆λ/λ ≈ 0.2 is possible
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The Ht̄t-Yukawa coupling

• If the Higgs is responsible for mass generation its
couplings should be proportional to the particle
mass

• The couplings HZZ, HWW are known from the
cross sections e+e− → ZH and WW → H

• The Yukawa couplings Hbb̄, Hcc̄, Hτ+τ− can be
obtained from the partial decay widths

• The top-Yukawa coupling is especially interesting
since gttH ∼ 1 and the top-quark plays a special
role in some theories

• A ∼ 35% estimate of the top-Yukawa coupling
can be obtained from the t̄t-threshold scan

• The top-Yukawa coupling can be measured from
t̄tH- events

Z,γ
t

t

H

H

t

t
Z
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Cross section:

0

0.5

1

1.5

2

2.5

3

3.5

4

500 550 600 650 700 750 800 850 900 950 1000

Event signatures:
t̄tH → WbWbbb̄ → 4q4b, 2qℓν4b
(2(ℓν) events and H decays not to bb̄ are not con-
sidered)

Assumptions:√
s = 800 GeV, L = 1000 fb−1, mH = 120 GeV

Milano, March 03 Higgs-physics-36 Klaus Mönig



Example: 2qℓν4b analysis

• start with preselection cuts, mainly to separate
“round” from “jetty” events

• after preselection

Signal (ε = 54%) 0.61 fb
Most dangerous backgrounds:

t̄t 10.97 fb
WW 4.05 fb

Total background: 17.59 fb

Process events with neural network including event
shapes, b-tagging, lepton-id

Milano, March 03 Higgs-physics-37 Klaus Mönig



Results:

• Can achieve S/B = 0.5 with ε = 27%

➠ ∆gttH = ±5.1%(stat) ± 3.8%(syst) for 5% error
on background normalization

• slightly worse results in fully hadronic channel

• total error of ∆gttH = ±5.5% seems possible

• ∼ factor 3 better than LHC
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Other SUSY Higgses

Masses of Higgs bosons:

If A heavy (mA > 200 GeV):

• sin2(β − α) ≈ 1 ⇒
– h is SM like

– H produced mainly in e+e− → HA

• H,A,H± almost degenerate in mass

➼ if mA >
√

s/2 only h can be seen
if mA <

√
s/2 full spectrum in reach
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Modest mA: no problem to see e+e− → Zh,
e+e− → ZH and e+e− → HA√

s = 400 GeV, L = 10 fb−1
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Large mA: For
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s = 800 GeV can see e+e− → HA
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Charged Higgses can be detected, independent of the
decay mode up to ∼ 80%

√
s/2 with low luminosity:

reconstructed invariant mass (GeV)
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√
s = 500 GeV

L = 10 fb−1

γγ collider

• Higgses are produced singly

• √smax ≈ 0.8
√

see

• can see H,A up to 650 GeV for
√

see = 800 GeV
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Heavy SUSY Higgses at LHC

• LHC results are very dependent on tan β

• tan β small: (almost) excluded by LEP → ignore

• tan β large: H,A-Strahlung off b-quark largely en-
hanced
➟ can see H,A in bb̄τ+τ− events up to fairly high
masses

• tan β moderate: “wedge region” no heavy Higgses
seen (however there are chances if the Higgses de-
cay into SUSY particles)
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Summary Higgs physics

• A SM-like Higgs definitely will be discovered at
LHC

• If a Higgs exists in the LC energy range, it will
be seen

• The task of the LC will be to measure the prop-
erties of the Higgs and to show that it is really
responsible for electroweak symmetry breaking.

• The present analyzes mostly assume a light Higgs,
for a heavier Higgs they have to be redone replac-
ing a bb̄-pair by a W-pair.

• The Higgs-mass can be measured to ≈ 50 MeV

• The Higgs couplings to heavier fermions and to
gauge bosons can be measured at the few percent
level

• The trilinear Higgs-coupling can be established on
the 20% level

• Not covered here: One can construct exotic mod-
els, where the LHC doesn’t see the Higgs, but the
LC still can
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