
1 Introduction

Physics with next generation Linear Colliders

Klaus Mönig DESY-Zeuthen

- **1** Introduction
- **2** Projects
- **3** Top-quark physics
- **4** Higgs physics
- **③** Physics of gauge bosons
- **6** Supersymmetry
- **7** Alternative theories
- **3** Precision measurements at lower energies

- Want to reach energy from LEP2 to $\sim 1 \text{ TeV}$ \Rightarrow circular machines no longer possible
- Cross sections in range few fb to few pb

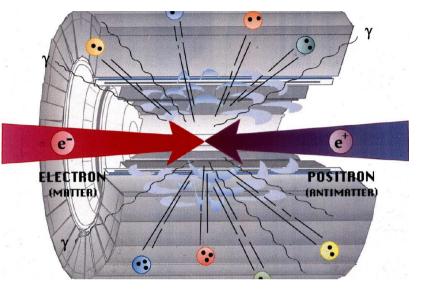
LC (TESLA) parameters:

- energy range: 1st stage: $\sqrt{s} \le 500 \,\text{GeV}$ 2nd stage: $\sqrt{s} \sim 1 \,\text{TeV}$
- Luminosity: $50(91 \text{ GeV}) 500(800 \text{ GeV}) \text{ fb}^{-1}/\text{year}$
- \bullet start data taking ≥ 2012
- electron polarization $\sim 80\%$
- \bullet positron polarization of 40-60% possible
- \bullet any LC can also be used as a $\gamma\gamma\text{-collider}$

This means:

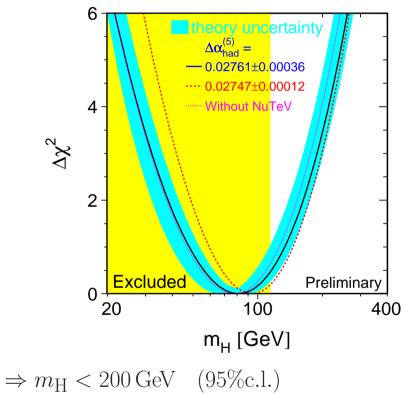
- few $\cdot 10^4 e^+ e^- \rightarrow HZ/year$ at $\sqrt{s} \approx 350 \text{ GeV} (m_{\text{H}} \approx 120 \text{ GeV})$
- $10^5 e^+e^- \rightarrow t\bar{t}/year$ at $\sqrt{s} \approx 350 \,\text{GeV}$
- $5 \cdot 10^5 e^+e^- \rightarrow q\bar{q}/year$ at $\sqrt{s} \approx 500 \text{ GeV}$ (no rad. ret)
- $10^5 e^+e^- \rightarrow \mu^+\mu^-/\text{year}$ at $\sqrt{s} \approx 500 \text{ GeV}$ (no rad. ret)
- $10^6 e^+e^- \rightarrow W^+W^-/year$ at $\sqrt{s} = 500 - 1000 \text{ GeV}$
- $10^9 e^+e^- \rightarrow Z/year$ at $\sqrt{s} \approx 91 \text{ GeV}$

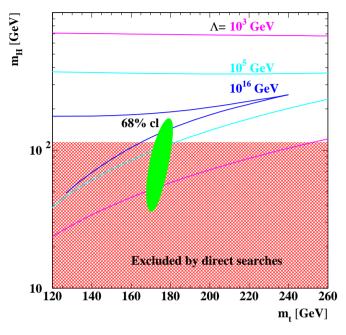
The most probable scene at the high energy frontier at the startup of a linear collider will be:


- \bullet LEP completed
- TEVATRON run II completed
- LHC has taken several years of data

Hadron collider

- Because of the high proton mass heigh energies are reachable
- however protons are composite particles:
 - parton energies are much lower than proton energy
 - $-\operatorname{interaction}$ on the parton level is unknown
 - proton remnant disappears in beam-pipe \Rightarrow kinematics must be reconstructed from the
 - decay products
- \bullet protons have strong interactions
 - -high background
 - $-\operatorname{not}$ all processes can be reconstructed
- hadron collider are "discovery machines"


Lepton collider


- Because of the smaller e-mass it is more difficult to reach high energies (synchrotron radiation)
- electrons are point like
 - -interaction energy = e^+e^- -energy
 - energy-momentum conservation can be used to reconstruct the event kinematics
- \bullet electrons have no strong interactions
 - $-\log$ backgrounds
 - $-\operatorname{all}$ events can be reconstructed
- lepton-collider are "precision machines"

The physics possibilities:

- The Standard Model is the final theory:
 - LEP,SLD,TEVATRON indicate that the Higgs is light

...which is perfectly consistent with the SM being the final theory:

- At least LHC should have seen the Higgs
- ➡ The Higgs is in the reach of the LC phase 1 and the LC can determine the Higgs properties in detail
- The world is supersymmetric:
 - $-\operatorname{at}$ least the light Higgs (h) has been seen by at least the LHC
 - probably some supersymmetric particles (squarks) are seen by LHC
 - at least the h has to be in the LC range

- there is a high chance that (some) sleptons and gauginos are seen by the LC as well
- ➡ (Some) SUSY parameters can be measured at the LC with good precision
- \bullet The gauge group is larger than $SU(3)\times SU(2)\times U(1)$
 - $-\,\mathrm{LHC}$ can directly see Z', W' until few TeV
 - $-\operatorname{LC}$ has a comparable reach by precision measurements via Z'-Z-, Z'- $\gamma\text{-interference}$
 - if LHC measures the Z' mass, LC can measure its couplings
- Symmetry breaking is realized by a strongly interacting scenario:
 - $-\operatorname{no}$ Higgs is seen at any machine
 - new resonances (if they exist) might be outside the reach for LHC and LC
 - both machines have a chance to see effects in triple/quartic gauge-boson couplings
- Whatever happens the LC is the first machine to do a precise exploration of the top-threshold

In general:

Whatever the scenario is, the LHC is the ideal machine to discover it, but has problems to measure its detailed properties

On the contrary an e^+e^- collider is the best machine to do precision measurements, especially if it is known, where to look

In these lectures I would like to convince you that we need the combination LHC-LC to really understand the physics at the TeV scale

Useful Web pages

- DESY/ECFA workshop on linear colliders: http://www.desy.de/conferences/ecfa-desy-lcext.htm
- TESLA TDR http://tesla.desy.de/tdr
- Linear Collider Physics Resource Book for Snowmass 2001: http://www.slac.stanford.edu/grp/th/LCBook/
- Snowmass 2001 "The future of particle physics" http:http://www.slac.stanford.edu/econf/C010630/pr
- This lecture http://www.ifh.de/www_users/zeus /moenig/academic_training/

2 Projects and Detectors

Projects for the next generation of lepton colliders:

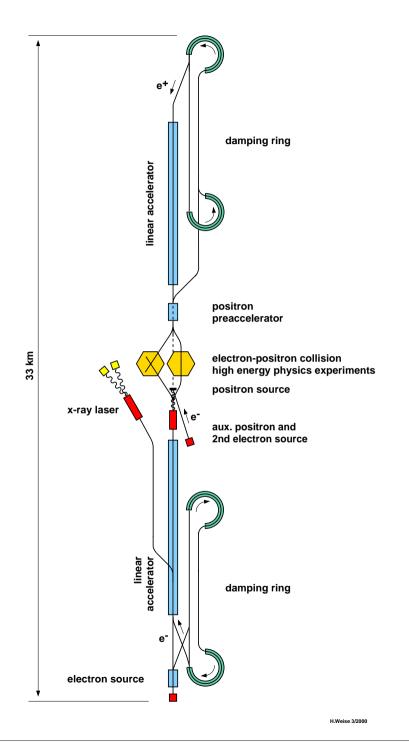
- NLC: USA (SLAC)
- JLC: Asia (KEK)
- \bullet TESLA: international collaboration at DESY

Gross parameters of all projects:

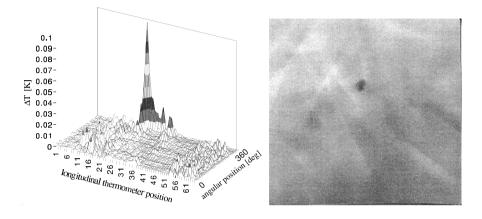
- first phase: $\sqrt{s} \le 500 \,\text{GeV}$
- upgrade: $\sqrt{s} \approx 1 \text{ TeV}$
- tunnel length $\sim 30 \mathrm{km}$
- \bullet physics start ~ 2012

NLC/JLC:

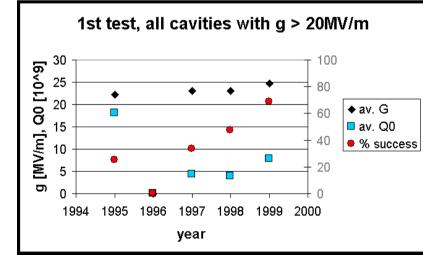
- normal conducting machines
- Luminosity $\mathcal{L} \approx 7 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$
- \bullet bunch trains of ~ 100 bunches with $\sim 3 \mathrm{ns}$ bunch spacing
- \bullet repetition rate 120Hz
- small crossing angle at IP
- \bullet maximal energy $1-1.5\,\mathrm{TeV},$ limited by klystrons


 $\mathrm{TESLA}{:}{\rightarrow} \mathrm{plot}$

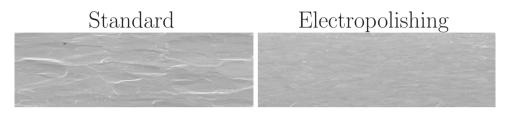
- superconducting machine
- Luminosity $\mathcal{L} \approx 3 5 \cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$ $\Rightarrow \sim 300 - 500 \,\text{fb}^{-1}/\text{year}$
- bunch trains of ~ 2800 bunches with $\sim 300 \mathrm{ns}$ bunch spacing
- \bullet repetition rate 5Hz
- \bullet head on collisions


Challenge: Have to increase accelerating field at an affordable cost

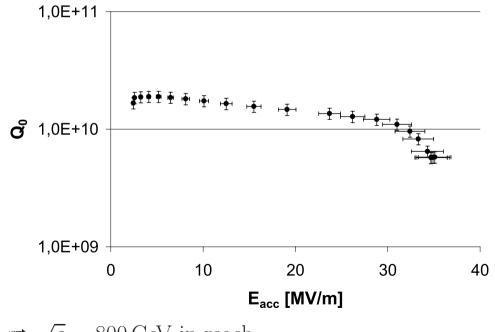
Basic structure: 9-cell niobium cavities



- Limit from critical field of niobium: $E < 50 \,\mathrm{MeV/m}$
- Practical limit: local impurities:



• solved with special cleaning processes

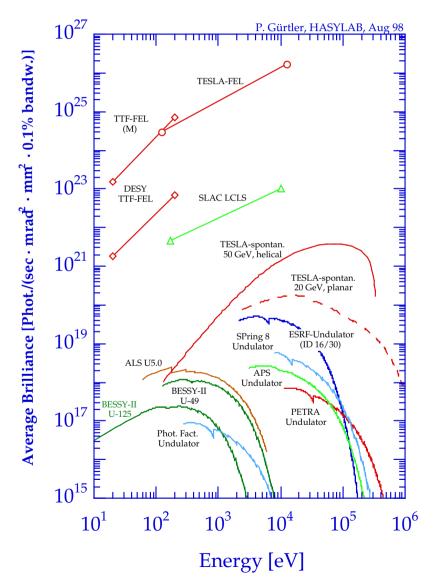


25 MeV/m is reached routinely \implies sufficient for $\sqrt{s} = 500 \,\text{GeV}$

$40\,\mathrm{MeV/m}$ reached for some single cell modules with electro-polishing

$35\,\mathrm{MeV/m}$ reached for the first multi-cell module

 $\rightarrow \sqrt{s} = 800 \text{ GeV}$ in reach


Comparison of machine types

Machine parameters at $\sqrt{s} = 500 \,\text{GeV}$

	TESLA	X-band		
frequency [GHz]	1.3	11.4		
gradient [MeV/m]	22	57		
AC power [MW]	95	99		
$\eta_{\rm AC-to-beam}$ [%]	23	8.8		
Beamstrahlung δ_b [%]	3	4		
σ_y at IP [nm]	5	5		
Norm $\varepsilon_{x,y}$ at IP [10 ⁻⁶ m]	10,0.03	$5,\!0.1$		
Luminosity $[10^{33}]$	31	7		
Alignment tolerances:				
acc. structures $[\mu m]$	500	10		
BPM resolution $[\mu m]$	10	1		
quad pos. drift [μ m]	0.5	0.01		

- Higher gradient in normal conducting machines may allow higher energy
- Higher efficiency in superconducting machined allows higher luminosity
- Smaller wakefields for lower frequencies relax alignment tolerances
- X-band luminosities can be brought close to TESLA by increasing power and reducing tolerances

The TESLA design contains an integrated free electron laser with few nanometer wavelength to enlarge the user community (solid state physics, chemistry, biology etc.)

Current TESLA Reference Parameter Set

	500 GeV	800 GeV	
repetition rate	5	3	Hz
no. of bunches per pulse	2820	4500	
pulse length	950	850	usec
bunch spacing	337	189	nsec
bunch charge	2.0×10^{10}	$1.4 x 10^{10}$	1/e
pulse current	9.5	11.9	mA
AC power (2 linacs)	95	132	MW
normalised IP emittance (x,y)	10, 0.03	8, 0.01	x10 ⁻⁶ m
IP beta-function (x,y)	15, 0.4	15, 0.3	mm
IP beam sizes (x,y)	553, 5	391, 2	nm
IP bunch length	0.4	0.3	mm
beamstrahlung dP/P	2.8	4.7	%
vertical disruption D _y	33	39	
luminosity	3.1x10 ³⁴	5.0x10 ³⁴	cm ⁻² s ⁻¹

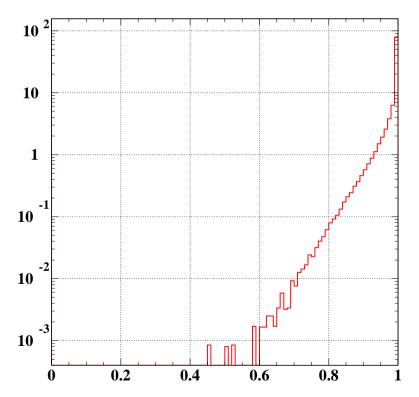
- \bullet electrons should be polarizable to $\sim 80\%$ with the same technology as at SLC
- positron polarization:
 - positrons are made by sending the high energy electrons through a wiggler to produce photons which are shot on a target to produce positrons
 - $-\,\mathrm{if}$ a helical undulator is used before the IP positron polarization of 50-60% should be possible

Advantage of electron polarization:

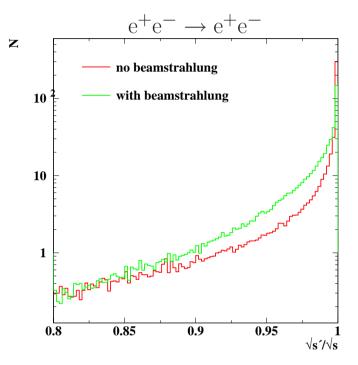
- only e_L^- couple to W^{\pm}
- ➡ cross sections can be enhanced and backgrounds can be suppressed (e.g. W-pair production)
- in the unbroken symmetry only e_L^- couple to the W^0 while both helicities couple to the B
- ➡ in many channels completely different couplings are probed

Advantage of positron polarization:

- the effective polarization gets increased (e.g. for Z exchange: $(\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_+ + \mathcal{P}_-}{1 + \mathcal{P}_+ \mathcal{P}_-})$ $\mathcal{P}_+ = 50\%, \mathcal{P}_- = 80\% \Rightarrow \mathcal{P}_{\text{eff}} = 93\%)$ and the error gets reduced (factor 3 for case above)
- the polarization can be measured with the Blondel scheme
- some backgrounds (e.g. single W) can only be suppressed with both beams polarized
- \bullet some analyzes (s-channel $\tilde{\nu}\text{-}\mathrm{exchange},$ neutralino-production) profit from both beams being polarized

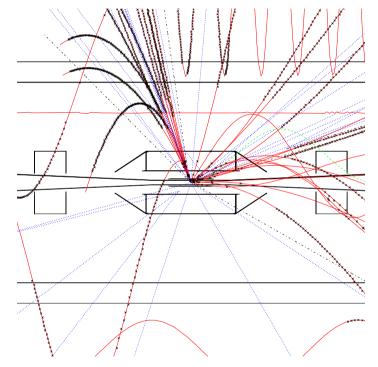

Common problem: beamstrahlung

Beams at IP are extremely collimated with many electrons/bunch


 \rightarrow very high charge density

 \Rightarrow Electrons of one bunch radiate against the coherent field of the other bunch (Beamstrahlung)

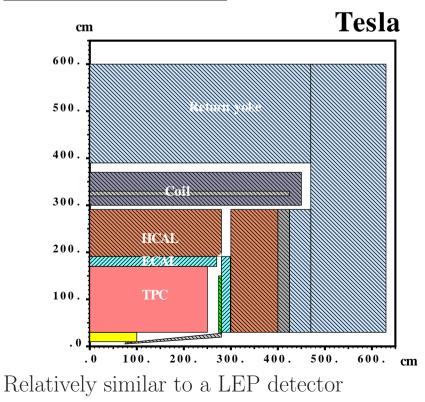
Average energy loss for colliding e⁺e⁻-pairs at 500 GeV: $\sim 1.5\%$


• For continuum processes beamstrahlung comparable to ISR, however with shorter tails

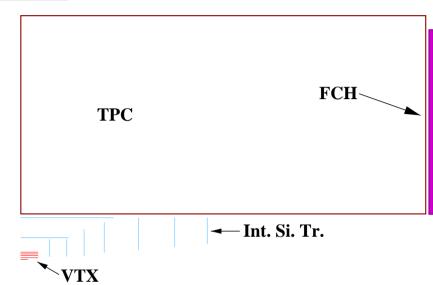
- beamstrahl spectrum can be measured on the 10^{-4} level from the acolinearity of Bhabha-events in the forward $(7^{\circ} 25^{\circ})$ region
- in general beamstrahlung is not a problem in the analyzes

$\gamma\gamma$ -background

- at the LC $\gamma\gamma$ -background originates from the usual e⁺e⁻-process and from beamstrahlung
- at TESLA luminosities the overlap probability for a $\gamma\gamma$ -event with a physics event is on the few % level

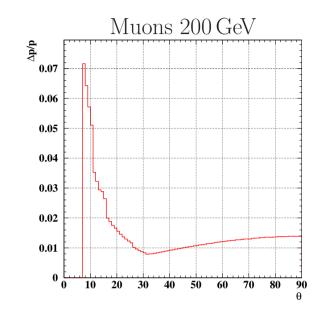


- events with $\gamma\gamma$ -overlap can be tagged by a displaced vertex in z and by topological variables
- first studies indicate that they will be no serious problem for physics

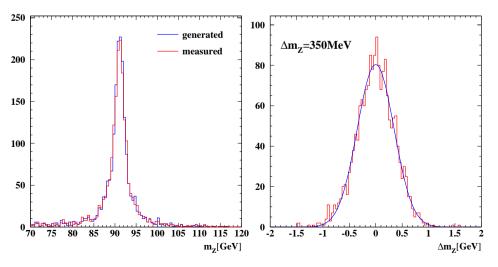

A possible Detector for TESLA

- For the TESLA TDR a possible detector has been designed
- This is meant as a proof that the required detector can be built with the (almost) available technology and with an affordable cost
- The US and Asian detectors are very similar, so only the TESLA detector will be described

Global detector concept


- Superconducting solenoid with B = 3 4T
- \bullet Vertex detector \rightarrow later
- \bullet Main tracker: TPC
- silicon tracker inside TPC consisting of barrel cylinders and forward discs
- \bullet forward chamber behind TPC

R&D issues for the main tracker

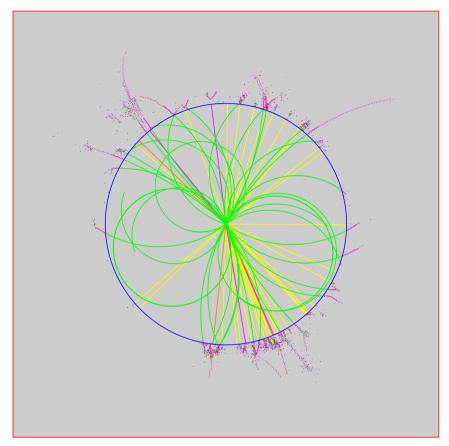

Mainly TPC:

- to cope with larger backgrounds many more pad rows than at LEP (> 150) are needed
- alternative readout schemes like GEMs under study:
 - charge cloud doesn't spread over several pads, how to get good point resolution?
 - how to avoid ion flow back into the sensitive volume?
- \bullet dense packing of electronics
- \bullet design of a very thin field cages and endplate

Tracking system gives excellent momentum resolution for $\theta > 7^\circ$

E.g. Z-mass resolution for $e^+e^- \rightarrow HZ, Z \rightarrow \mu^+\mu^-$ totally dominated by intrinsic Z-width

Calorimetry:


- To improve resolution main part of hadroncalorimeter will be inside coil
- Energy flow will be calculated à la LEP $(E_{\text{tot}} = E_{\text{charged}} + E_{\gamma} + E_{n, K_L^0})$ $\Rightarrow \text{Spatial resolution is more important than energy resolution}$

• Aim for

$$- \text{ECAL: } \frac{\Delta E}{E} = \frac{0.10}{\sqrt{E}} \oplus 0.01$$
$$- \text{HCAL: } \frac{\Delta E}{E} = \frac{0.50}{\sqrt{E}} \oplus 0.04$$

- \bullet several technologies under study
 - -shashlik
 - scintillating tiles
 - $-\operatorname{Si-W}$ (EM only) clearly the best option, if affordable
 - small cells $(1 \times 1 \text{cm}^2)$ with binary readout (hadron only) might be superior to scintillator because of better separation of nearby showers

Hadronic event in the SiW-Calorimeter

$\underline{R\&D}$ issues in for the calorimeter

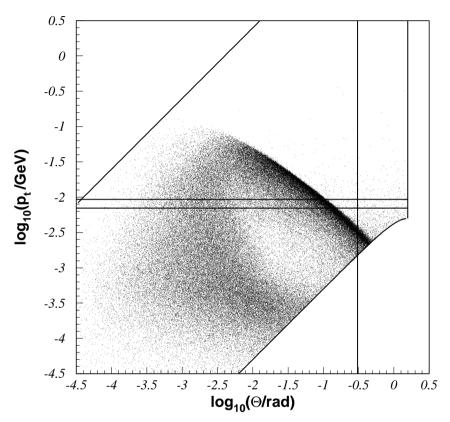
General:

• Energy flow concept requires very sophisticated reconstruction algorithms

SiW:

- minimization of silicon cost
- \bullet dense packing of channels
- \bullet fabrication of homogeneous tungsten surfaces

Scintillating tiles:

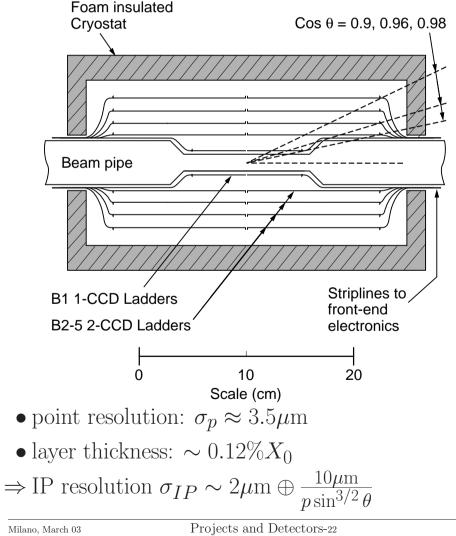

- minimization of tiles (fiber coupling)
- cheap fiber readout

Digital calorimeter:

• cost minimization of readout channel $(5 \cdot 10^7 \text{ channels!!!})$

<u>Vertex detector</u>

Main issue: e^+e^- pairs from beamstrahlung


For a given B field p_t translates into a maximum radius

At TESLA $B=3T,\,r=1.5{\rm cm}$ corresponds to 0.03 hit/mm²/BX

Technologies:

- Pixels à la ATLAS
- CMOS-Pixels (very attractive idea)
- CCDs (pioneered at SLD)

CCDs

R&D issues for the vertex detector

CCDs:

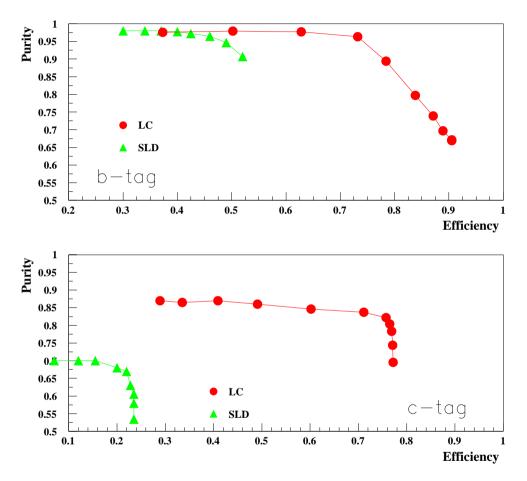
- currently the readout time is very long accumulating background over many bunch crossings
 - column parallel readout
 - readout frequency 50 MHz
 - readout detector continuously
- \Rightarrow One complete readout extends over ~ 100 bunch crossings \rightarrow 3 hits/mm²/BX
- thinning of layers

Pixels:

- need to make detector much thinner
- need to improve resolution (floating pixels)

CMOS:

(same technology as in cheap video cameras, potential to be fast and cheap)

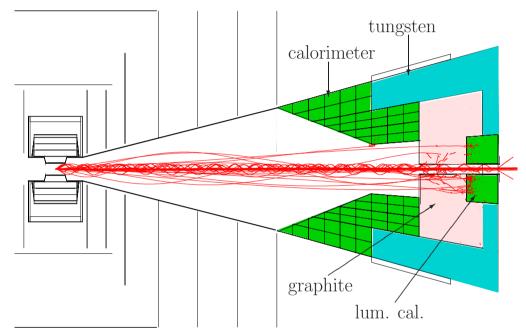

• first promising results on small test chips but no running large scale system yet

Projects and Detectors-23

Klaus Mönig

B-tagging: Very good results with SLD-like algorithm

CCD VXD flavour tagging results: Ejet = 46 GeV



- Very high b-efficiency \Rightarrow important for multi-b final states with low σ (ZHH,ttH)
- Good c-efficiency/purity \Rightarrow important for $BR(H \rightarrow c\bar{c})$

Milano, March 03

Very forward region:

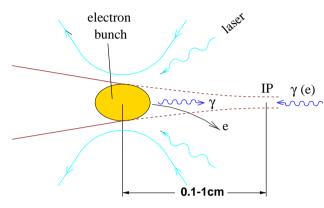
- Pairs give large background in very forward region
- Also lots of neutrons in this region
- \blacksquare Need mask at $\theta < 5^{\circ}$

- Environment clean enough above $\theta = 1.5^{\circ}$ to install hermeticity calorimeters for searches and precision luminosity
- Below 1.5° only luminosity calorimeter for machine tuning and limited tagging for searches

Projects and Detectors-25

• R&D needed for radiation hardness of LCAL

Trigger


- detector is designed without any hardware trigger
- a full bunch train is read out and send to a PC farm
- \bullet bandwidth not larger than level 2 at LHC
- \bullet the system is completely deadtime free
- the full detector information can be used to select complicated new physics channels
- no need to include fast detectors for triggering

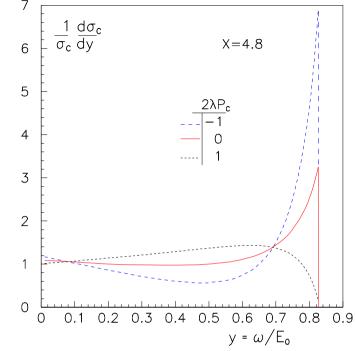
<u>e⁻e⁻-collider:</u>

- to run an e⁺e⁻-collider in e⁻e⁻ mode should be a relatively simple modification
- since the pinch-effect turns into an anti-pincheffect luminosity can be about an order of magnitude lower
- \bullet the interaction region can stay the same
- physics interest:
 - $-\operatorname{precision}$ measurement of Møller-scattering
 - precision measurement of the selectron mass (β instead of β^3 suppression due to χ^0 t-channel production)
 - access to the I = 2 amplitude in WW-scattering
 - -some exotic models, e.g. with doubly charged leptons

 $\gamma\gamma$ and $e\gamma$ collider

• high energy γ s can be produced by Compton backscattering with laser light close to the IP

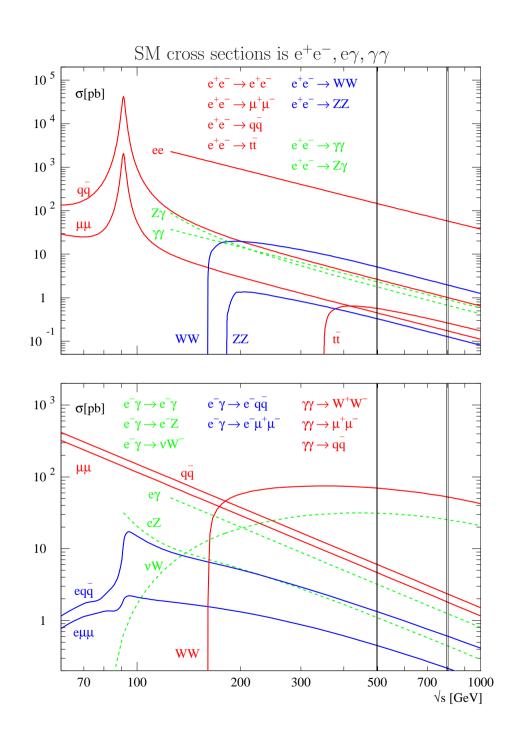
• Maximal photon energy ω_m :


$$\omega_m = \frac{x}{x+1} E_0$$

$$x = \frac{4E_0\omega_0}{m^2c^4}$$

$$\simeq 15.3 \left[\frac{E_0}{\text{TeV}}\right] \left[\frac{\omega_0}{eV}\right]$$

 $(\omega_0(E_0) = \text{laser (beam) energy})$ have to keep x < 4.8 to avoid $\gamma \gamma \rightarrow e^+e^-$ in the laser interaction region $\Rightarrow \omega_m \approx 0.8E_0$


• γ energy spectrum depends on product of electron and laser polarization $\gamma\text{-}\mathrm{energy}$ spectrum for different polarization products

- luminosity for $\gamma\gamma$, $e\gamma$ -colliders factor 5-10 lower than for e⁺e⁻-colliders for identical beam parameters (can be brought to 40% by optimizing parameters)
- to separate used photon beam from incoming beam a crossing angle is needed
- background situation is similar to e⁺e⁻-mode
- however ~ 1.5 underlying events from low energy $\gamma\gamma$ collisions

Physics interest:

- some cross sections involving gauge bosons are larger than in $e^+e^- \rightarrow plot$
- coupling to photons can be measured without ambiguities from Z-couplings
- a $\gamma\gamma$ -collider can measure cleanly the partial width $H \to \gamma\gamma \to$ later
- \bullet the mass reach for some particles (Higgses, SUSY-particles, W') can be higher than in e⁺e⁻
- \bullet an $e\gamma\text{-collider}$ is an ideal place to measure the photon structure

A possible roadmap to an LC (TESLA)

- All regions agree that we need one TeV-class LC in the world as the highest priority project in HEP
- \bullet Wherever it will be build we will all collaborate
- the TESLA "Technical Design Report" has been submitted in march 2001
- the project has reviewed by the German science council
- a first reaction from the German government exists
- The projected cost of TESLA is:

-500 GeV linear collider:	3.1 Geuro
- addition for FEL:	$0.5\mathrm{Geuro}$
-HEP detector:	$0.2\mathrm{Geuro}$

- A realistic estimate of the German contribution is $\mathcal{O}(50\%)$.
- \bullet The rest has to come as international contribution
- TESLA will be organized as a temporary international organization.
- \bullet total construction time 8 years
- \bullet we could start data taking in 2012

Recent press release by the German government

A new free electron laser is to be built at the DESY research centre in Hamburg. In view of the locational advantage, Germany is prepared to cover half of the investment costs amounting to 673 million Euro. Talks on European cooperation will soon start so that it will be possible to take a decision on construction within about two years. The construction period will be approximately six years.

No German site is at present proposed for the TESLA linear accelerator. The reason is that the accelerator project will be an international collaboration. International developments must therefore be taken into account. An independent initiative by Germany concerning the site of the accelerator is neither appropriate nor necessary. DESY will, however, be able to continue its international research work so that German participation in a future global project will be possible.

3 Top-quark-physics

- Introduction
- Measurement of the top-mass
- Top-quark couplings
- \bullet Top-Higgs Yukawa coupling \rightarrow Higgs section
- Conclusions

Introduction

- The top quark is the heaviest fermion $(m_{\rm t} \approx 175 \,{\rm GeV} \sim v)$
- In the SM it is just the isospin partner of the bquark
- however in some models it plays a special role in electroweak symmetry breaking
- \blacklozenge it is very important to study the top properties
- \bullet since $m_{\rm t}^2 \gg m_{\rm W}^2$ the top width is very large

$$\Gamma_t \approx \frac{G_{\rm F} m_{\rm t}^3}{8\sqrt{2}\pi} \approx 1.7 \,{\rm GeV} \gg \lambda_{QCD} \Rightarrow$$

- there exist no toponium resonances at threshold
- the top decays before it fragments
 - \Rightarrow the top-polarization gets preserved to the decay, like the τ at LEP

LHC:

- $\sigma(t\bar{t}) \sim 1 \text{ nb} \Rightarrow$ huge data samples should allow very precise studies of top decays, especially rare decays
- $t\bar{t}$ production by strong interaction \Rightarrow no interesting information on $t\bar{t}Z$ coupling
- $t\bar{t}$ production in continuum \Rightarrow no threshold scan possible

LC:

- $\sigma(t\bar{t}) \sim 1 \,\mathrm{pb} \Rightarrow \sim 10^5 \,t\bar{t}$ events allow for precise studies
- t t production via γ , Z exchange \Rightarrow t Z couplings can be measured
- \sqrt{s} can be adjusted at will \Rightarrow threshold scan possible

Measurement of the top-mass

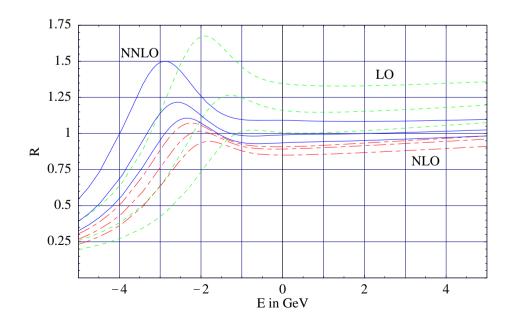
Why do we want to know the top-mass as accurate as possible?

• a future theory of flavor hopefully predicts fermion masses or mass/ratios

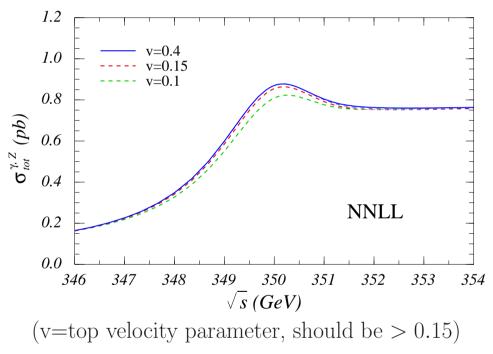
 \rightarrow The mass of the heaviest quark should be known as close as possible to the precision of the $\tau\text{-mass}$

- in precision tests of the SM $m_{\rm t}$ enters quadratically:
 - $-\Delta m_{\rm W}/\Delta m_{\rm t} = 0.006$ ultimately: $\Delta m_{\rm W} = 6 \,\text{MeV}$ $-\Delta \sin^2 \theta_{\rm eff}^{\ell}/\Delta m_{\rm t} = 0.00003/\,\text{GeV}$ ultimately: $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.00002$
 - \Rightarrow need $\Delta m_{\rm t} < 1 \,{\rm GeV}$
- In SUSY models radiative corrections to light Higgs (h) mass: $\Delta m_h / \Delta m_t \approx 1$ \Rightarrow aim for $\Delta m_t \approx \Delta m_h \approx 50 \text{ MeV}$

What is the top mass?

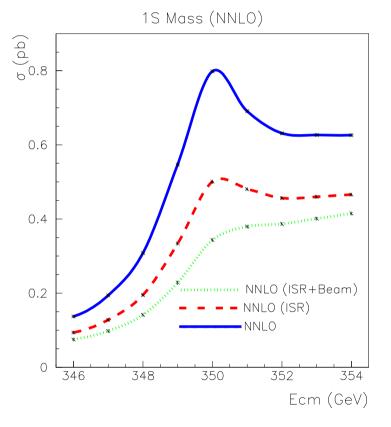

- Quarks are not free particles ⇒ their mass is not unambiguously defined
- pole mass: pole of propagator, natural definition if top-decays are reconstructed
- $\overline{\text{MS}}$ -mass: running mass in QCD (like coupling constant), needed in radiative corrections
- conversion pole mass $\rightarrow \overline{\text{MS}}$ -mass has theoretical uncertainties of $\mathcal{O}(1 \text{ GeV})$
- limit of all top-reconstruction methods
- additional ambiguity of same order for reconstruction methods since only color neutral objects can be reconstructed
- threshold scans: no natural mass definition, can do calculations in several ones

Most promising method: threshold scan


- Due to large top mass and the corresponding short lifetime no toponium resonances are existing any more
- However still large corrections due to Coulomblike QCD potential:

$$E_{\text{tot}}(r) = 2m_{\text{t}} + V(r)$$
$$V(r) \propto \frac{\alpha_s(1/r)}{r}$$

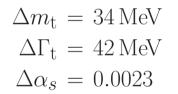
 \bullet QCD corrections known to 3rd order (pole mass)

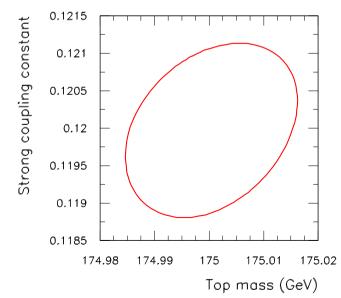


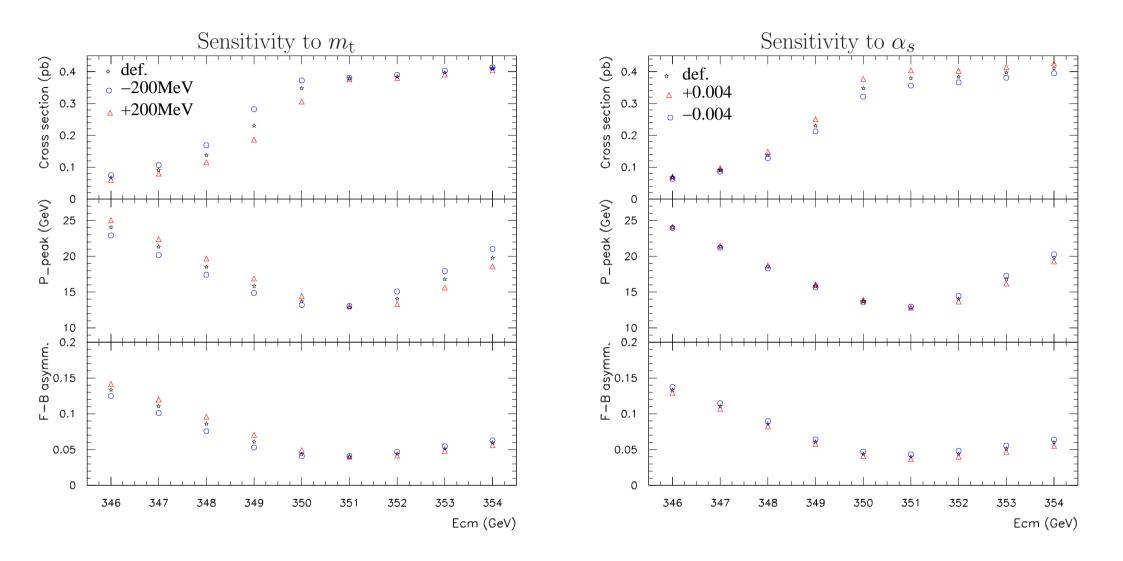
- large scale dependence and huge shift of the peak from order to order using pole mass
- \bullet theoretical error on $m_{\rm t}$ unclear
- \bullet in addition the same uncertainty appears going from $m_{\rm pole}$ to $m_{\overline{\rm MS}}$
- both problems can be solved by redefining the mass, shifting part of the potential to the mass definition

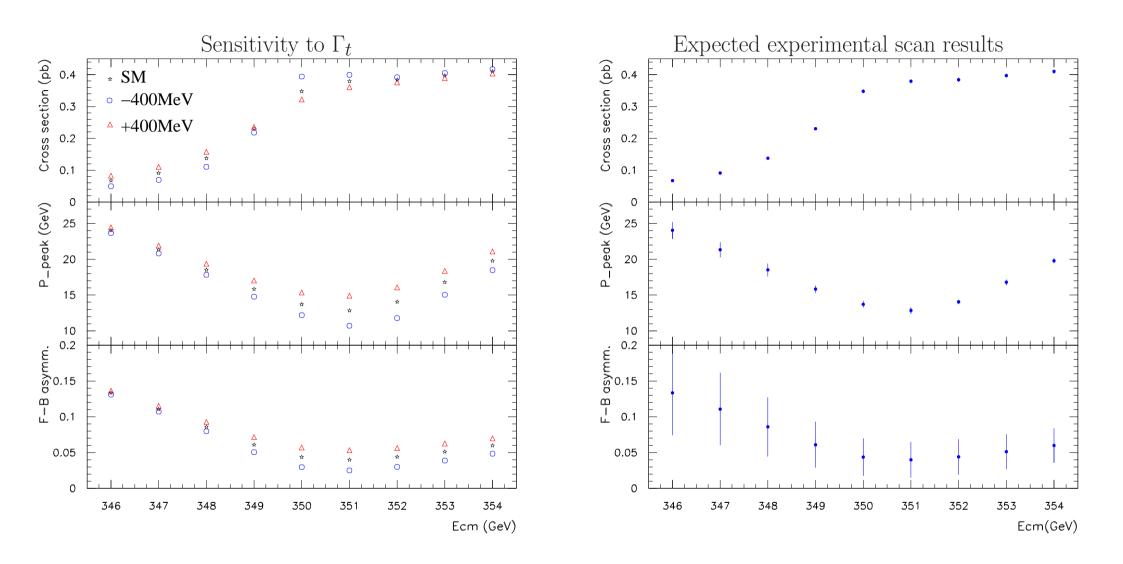
Threshold cross section now very well under control

• In the QCD-corrected cross section some remnant of the 1S peak remains visible




- This peak is completely washed out by ISR, beamstrahlung and beamenergy-spread
- However uncertainties in beam parameters do not effect precision of $m_{\rm t}$ measurement

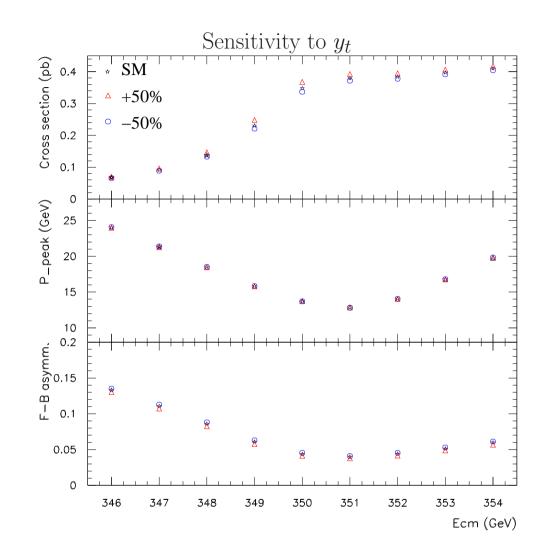

Additional information:


- absolute value of the $\mathrm{t}\bar{\mathrm{t}}$ cross section: sensitive to $\alpha_s,\,\Gamma_t$
- \bullet Momentum distribution of top quarks near threshold sensitive to $m_{\rm t}$
- Forward backward asymmetry: sensitive to Γ_t
- Can try multi-parameter fits

Results (10 scan points with $\mathcal{L} = 30 \, \text{fb}^{-1}$ each):

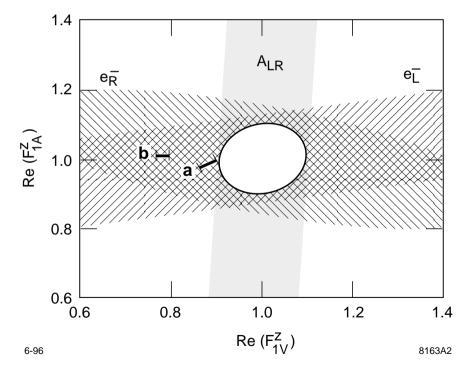
One step further:

The absolute value of the cross section is also sensitive to the Ht Yukawa coupling (y_t)


 \Rightarrow can take α_s from other measurements and fit y_t instead

Result:

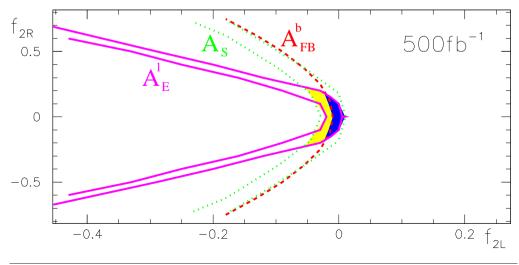
$$\frac{\Delta y_t}{y_t} = \frac{+0.35}{-0.65}$$


for a 3-parameter fit

(LHC: $\Delta m_{\rm t} \approx \pm 1.5 \, {\rm GeV}$)

$t\bar{t}Z$ couplings

- the top-couplings to the Z can be obtained from tt-production in the continuum
- due to the interference between Z and γ exchange the total cross section and the left-right asymmetry are sensitive to the Z-couplings
- a very conservative analysis at $\sqrt{s} = 400 \,\text{GeV}$ gives 90% c.l. limits on the 10% level for anomalous couplings


• this precision is sensitive to some ETC-models

Wtb couplings

• effective Lagrangian:

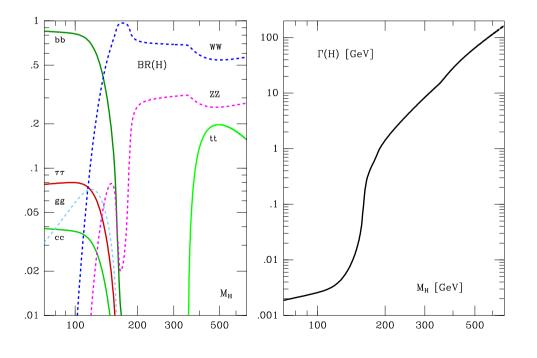
$$\mathcal{L} = \frac{g}{\sqrt{2}} \left[W_{\mu}^{-} \bar{b} (\gamma_{\mu} f_{1L} P_{-} + \gamma_{\mu} f_{1R} P_{+}) t - \frac{1}{2M_{W}} W_{\mu\nu} \bar{b} \sigma^{\mu\nu} (f_{2R} P_{-} + f_{2L} P_{+}) t \right] + \text{h.c.}$$
$$(P_{\pm} = 1/2 (1 \pm \gamma_{5}) \text{ SM: } f_{1L} = 1, \text{ rest} = 0$$

- Present data put tight constraints on f_{1L} , f_{1R} , so try to measure f_{2L} , f_{2R}
- use $e^+e^- \rightarrow t\bar{t} \rightarrow X\ell\nu$ at $\sqrt{s} = 500 \,\text{GeV}$ and assume $t\bar{t}Z$ -vertex to be standard
- analyze A_{FB}^b , A_{FB}^ℓ and lepton energy in top rest frame
- results: $\Delta f_{2L} \approx 0.02, \, \Delta f_{2R} \approx 0.2$

Conclusions on top-quark physics

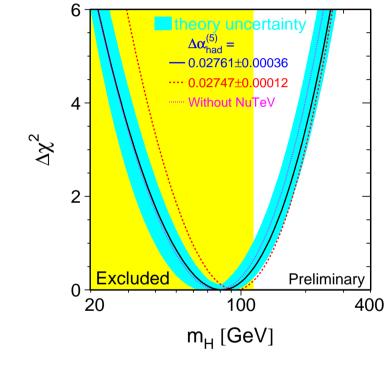
- \bullet The $\mathrm{t}\bar{\mathrm{t}}$ threshold seems theoretically well under control
- The top quark mass can be measured to ~ 50 MeV which is more than one order of magnitude better than what LHC can do
- \bullet the top width can be measured on the 3% level in the threshold scan
- the LC is the unique place to test ttZ-couplings and can do that with a precision to better than 10%
- for t-decay physics probably the LHC is better due to much higher statistics

- The Higgs-mechanism is the only way we know to give masses to particles in the SM
- Up to now we have no direct evidence for any Higgs-particle
- If the Higgs exists, at least the LHC should have found a particle compatible with it,
- The LC has then to prove that this is really the particle responsible for mass generation


Predictions for the Higgs

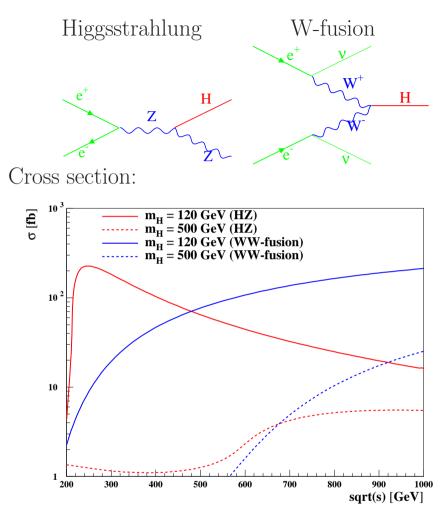
Standard Model:

- One complex Higgs doublet $\begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$ with vacuum expectation value $\begin{pmatrix} 0 \\ v \end{pmatrix}$, v = 246 GeV.
- Higgs potential $V(\Phi) = \lambda (\Phi^* \Phi v^2/2)^2$
- \bullet Higgs mass $m_{\rm H}^2 = 2\lambda v^2$


• Partial widths:

$$\begin{split} \Gamma(H \to \mathrm{f}\bar{\mathrm{f}}) &= \frac{N_c^{(f)} G_{\mu}}{4\sqrt{2}\pi} m_f^2(m_H) m_H (1 + \delta_{QCD}^{(f)}) \\ \Gamma(H \to VV) &= \frac{3G_{\mu}^2 m_Z^4}{16\pi^3} m_\mathrm{H} R_V (m_V^2/m_\mathrm{H}^2) \\ &\to 2(1) \frac{\sqrt{2}G_{\mu}}{32\pi} m_\mathrm{H}^3 \quad [V = W(Z)] \end{split}$$

Limits on $m_{\rm H}$


- \bullet direct searches at LEP: $m_{\rm H} > 114\,{\rm GeV}$
- hint of a signal at $m_{\rm H} \approx 115 \,{\rm GeV}$
- \bullet electroweak precision data

 $\Rightarrow m_{\rm H} < 200 \,{\rm GeV} \quad (95\% {\rm c.l.})$

• perturbativity and vacuum stability if SM valid up to M_{pl} : $m_{\rm H} \sim 120 - 180 \,{\rm GeV}$

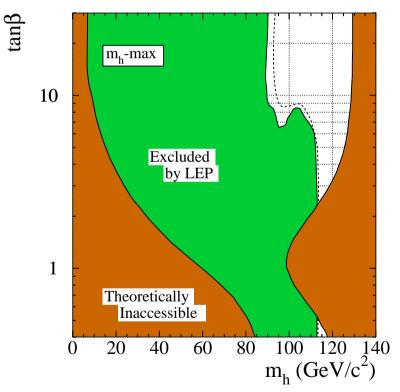
Higgs production

- \bullet both channels accessible at LC
- cross section $\sim 100(\sim 10)$ fb for $m_{\rm H} = 120(500)$ GeV
- $\clubsuit \, {\rm few} \times 10^4 (10^3)$ Higgses per year

MSSM:

SUSY needs two Higgs-doublets (H_1, H_2) to generate masses of down- and up-type particles

Physical particles:


$$\begin{split} h &= H_2 \cos \alpha - H_1 \sin \alpha \\ H &= H_2 \sin \alpha + H_1 \cos \alpha \\ A & \mathrm{CP} - \mathrm{odd} \\ H^{\pm} & \mathrm{charged \ Higgses} \end{split}$$
Define $\tan \beta = \frac{v_2}{v_1} = \mathrm{ratio} \ \mathrm{of} \ \mathrm{expectation} \ \mathrm{values} \ (v_1^2 + v_2^2 = v_{SM}^2)$
Born Formulae:
$$\begin{split} m_{h,H}^2 &= \frac{1}{2} \Big[m_A^2 + m_Z^2 \mp \\ \sqrt{\left(m_A^2 + m_Z^2\right)^2 - 4m_A^2 m_Z^2 \cos^2 2\beta} \Big] \\ m_h < m_Z \\ m_H > m_Z \\ m_{H^{\pm}}^2 &= m_A^2 + m_W^2 \\ \tan 2\alpha &= \tan 2\beta \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2} \left(-\frac{\pi}{2} < \alpha < 0 < \beta < \frac{\pi}{2} \right) \end{split}$$

Higgs sector described by two free parameters

However large radiative corrections:

- shift of m_h up to $\sim 130 \,\text{GeV}$
- prediction gets dependent on other SUSY parameters, especially on mixing in stop sector
- \bullet strong dependence on top mass: $\Delta m_h/\Delta m_{\rm t}\approx 1$

Currently allowed region:

 $\tan \beta > 2$ preferred!

Complementarity of cross sections:

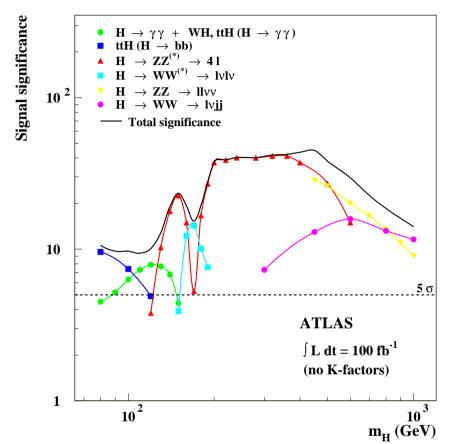
$$\sigma(e^+e^- \to Zh) = \sin^2(\beta - \alpha)\sigma_{SM}$$

$$\sigma(e^+e^- \to Ah) = \cos^2(\beta - \alpha)\bar{\lambda}\sigma_{SM}$$

$$(\bar{\lambda}: \text{ P-wave suppression})$$

If m_A large:

- $\beta \alpha = \pi/2 \implies \sigma(e^+e^- \to Zh) = \sigma_{SM}$
- $\bullet \, m_H \approx m_{H^\pm} \approx m_A$
- \Longrightarrow Only one SM-like Higgs can be seen


Branching ratios:

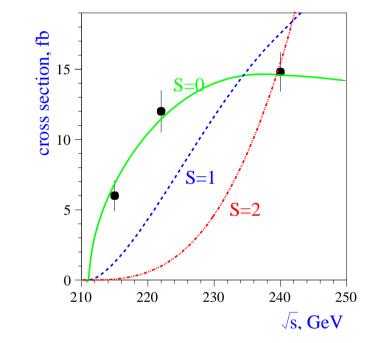
$$\Gamma(h \to U\overline{U}) = \frac{\cos^2 \alpha}{\sin^2 \beta} \Gamma_{\rm SM}(h \to U\overline{U})$$

$$\Gamma(h \to D\overline{D}) = \frac{\sin^2 \alpha}{\cos^2 \beta} \Gamma_{\rm SM}(h \to D\overline{D})$$

- \bullet For m_A large also branching ratios become SM like
- however, it turns out that some sensitivity remains in regions where no other Higgs than h can be seen

LHC discovery of the Higgs

A SM-like Higgs cannot be missed by the LHC



The task of the LC is then precision measurements

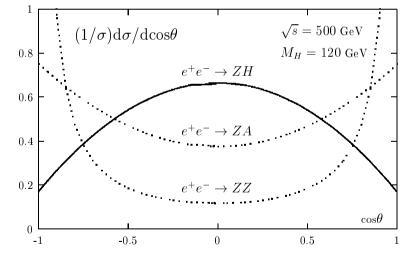
Measurement of the H quantum numbers

After the H has been discovered it has to be proven that its quantum numbers are really 0^+

At the LC this can be done with a threshold scan of ${\rm e^+e^-} \rightarrow {\rm ZH}:$

- Large sensitivity to the different states
- The few remaining ambiguities can be resolved from angular dependences and the observation of $H \to \gamma \gamma$
- Alternatively spin/parity can be measured in transverse/longitudinally polarized $\gamma\gamma$ -collisions

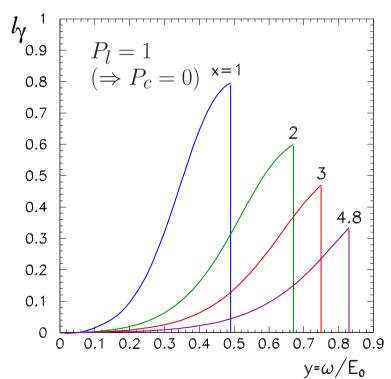
Milano, March 03


What can the LHC do on J,P?

- $H \rightarrow \gamma \gamma$ excludes J=1
- if $H \to ZZ$ is visible S should be measurable from spin correlations

The Higgs CP quantum numbers

 Angular distributions give admixture of CP odd Higgs |η| LC: 3%

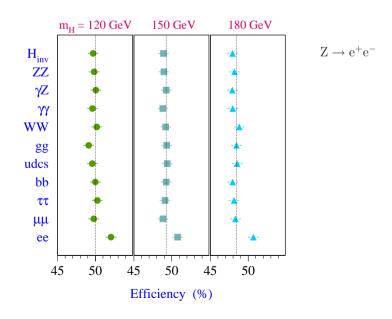

LHC: 30%

• However CP-odd Higgs doesn't couple to vector boson pairs directly

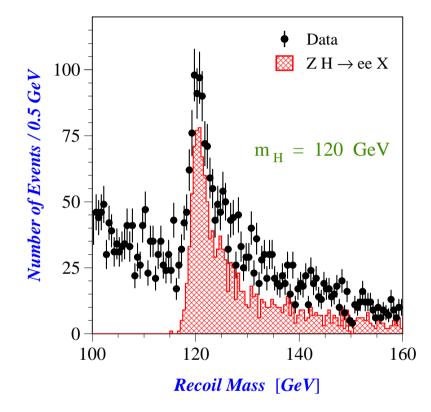
- $\rightarrow \eta =$ mixing angle × loop factor
- \implies might not be visible

- Alternative: $\gamma\gamma$ collisions:
 - Use linear beam polarization $\vec{\varepsilon_1}, \vec{\varepsilon_2}$
 - CP-even Higgs: $\sigma \propto \vec{\varepsilon_1} \cdot \vec{\varepsilon_2}$
 - CP-odd Higgs: $\sigma \propto [\vec{\varepsilon_1} \times \vec{\varepsilon_2}] \cdot \vec{k_{\gamma}}$
 - $-\operatorname{Coupling}$ strength roughly equal
 - Asymmetry measures CP-even CP-odd mixture
 - Problem: transverse beam polarization large for small $x \rightarrow \text{small } \sqrt{s}$

- $\Rightarrow \text{fine for small } m_H, \text{ difficult for large } m_H \text{ (heavy SUSY Higgses)}$
- $-\,f_{CP}<\,0.2$ at 95% C.L. might be possible for $m_{H}=120\,{\rm GeV}$

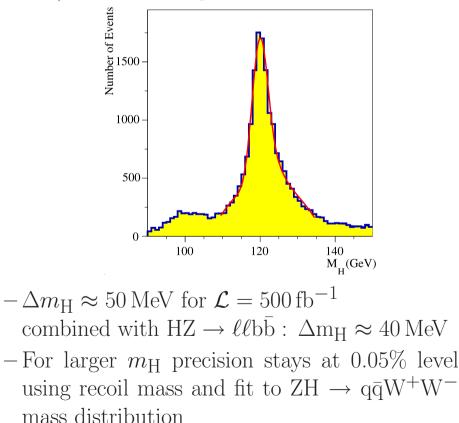

Measurement of the $e^+e^- \rightarrow HZ$ cross section

Need a measurement of the total cross section $\sigma(e^+e^- \rightarrow HZ)$ independent of the H decay mode:

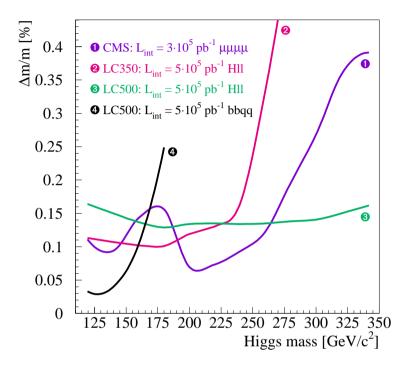

- $\sigma(e^+e^- \rightarrow HZ)$ measures $\Gamma(H \rightarrow ZZ)$
- absolute normalization for H-branching ratio measurements

Method

- select HZ events with $Z \to e^+e^-, \mu^+\mu^-$ only by looking at the leptons cutting on $m_{\ell\ell} \sim m_Z$
- efficiency (almost) independent of H-decay mode



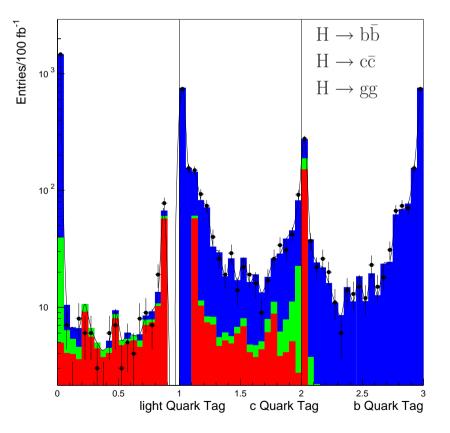
- \bullet fit recoil mass distribution
- Higgs signal clearly visible with some tails from ISR and beamstrahlung



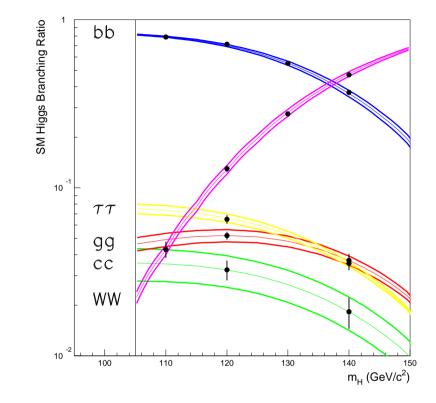
- from Z recoil mass: $\Delta m_{\rm H} \approx 140 \,{\rm MeV}$
- alternative: constrained fit similar to $m_{\rm W}$ at LEP:
 - -Analysis with $m_{\rm H} = 120 \,{\rm GeV}, \, \mathcal{L} = 500 \,{\rm fb}^{-1}$
 - -Select $e^+e^- \rightarrow HZ$ -events
 - perform constrained fit imposing energy/momentum conservation and taking into account ISR/beamstrahlung

Milano, March 03

Comparison of Higgs-mass determination at LC and LHC


- recoil-mass method similar to LHC over the full mass range
- direct reconstruction with $H \rightarrow b\bar{b}$ superior at low $m_{\rm H}$ needs to be tried with $H \rightarrow WW, ZZ$ at higher masses
- \bullet threshold scan not yet explored

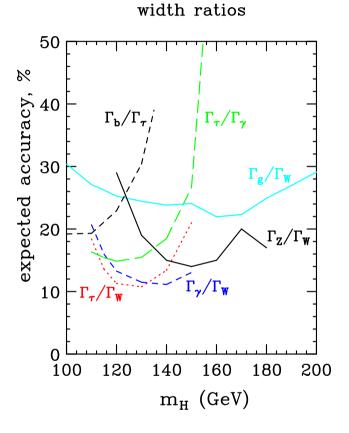
How well do we need to know $m_{\rm H}$


- \bullet SM: dependence of precision observables on $m_{\rm H}$ only logarithmic
 - $\Rightarrow \Delta m_{\rm H} \sim 1 \,\text{GeV}$ largely sufficient
- Beyond SM, e.g. SUSY: $m_{\rm H}$ connected with fundamental parameters of the theory \Rightarrow need $m_{\rm H}$ as good as possible However:
 - -large radiative corrections from top-sector $(\delta m_{\rm H}/\delta m_{\rm t} \approx 1)$
 - ➡ Top mass error might be limiting factor

Measurement of the Higgs branching ratios

- absolute branching ratios can be measured from the $Z \rightarrow \ell \ell$ sample
- ratios of branching ratios can also be obtained from other channels
- different 2-jet modes can be separated by btagging

Results:
$$(\sqrt{s} = 350 \,\text{GeV}, \,\mathcal{L} = 500 \,\text{pb}^{-1})$$



 $m_{\rm H} = 120 \,\mathrm{GeV}$:

Channel	$\delta(BR(H\to X)/BR$
$H^0/h^0 \to b\bar{b}$	± 0.024
$H^0/h^0 \to c\bar{c}$	± 0.083
$H^0/h^0 \rightarrow gg$	± 0.055
$H^0/h^0 \to \tau^+ \tau^-$	± 0.050
$H^0/h^0 \to WW^*$	± 0.051

LHC results on branching ratios

LHC can measure Higgs decays into several channels \Rightarrow direct measurement of ratios of partial widths

To get partial width the LHC always needs as sumptions $(b-\tau$ universality!!)

Even with these assumptions it is about a factor 4 worse than LC

The total width of the Higgs

For $m_{\rm H} < 2m_{\rm W}$

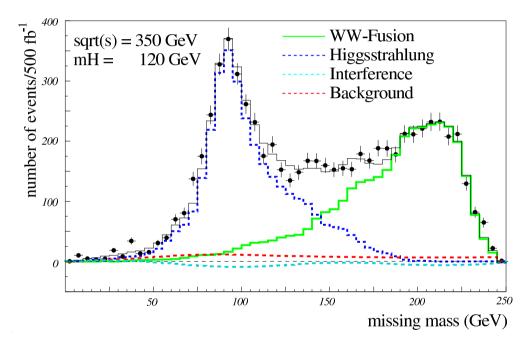
$$BR(H \to X\bar{X}) = \Gamma(H \to X\bar{X})/\Gamma_{\rm H}$$

$$\sigma(e^+e^- \to {\rm HZ}) \propto \Gamma(H \to ZZ)$$

$$\sigma({\rm W}^+{\rm W}^- \to {\rm H}) \propto \Gamma({\rm H} \to {\rm W}^+{\rm W}^-)$$

Assuming SU(2) invariance for the Higgs couplings:

$$\Gamma_{\rm H} \propto \frac{\sigma({\rm e^+e^-} \rightarrow {\rm HZ})}{BR({\rm H} \rightarrow {\rm W^+W^-})}$$


 \blacksquare Can obtain Higgs width with $\Delta\Gamma_{\rm H}/\Gamma_{\rm H}<6\%$ up to $m_{\rm H}\sim180\,{\rm GeV}$

Drop assumption of SU(2) invariance

► Have to measure Higgs-fusion cross section

Measurement of $e^+e^- \rightarrow \nu\nu H \rightarrow \nu\nu b\bar{b}$

• $e^+e^- \rightarrow \nu\nu H \rightarrow \nu\nu b\bar{b}$ events are selected using b-tag, $m_{\rm rec}$, $m_{\rm miss}$ and $E_{\rm miss}$

- $e^+e^- \rightarrow ZH$ with $Z \rightarrow \nu\nu$ and WW $\rightarrow H$ are separated by a fit to the missing mass distribution
- for $m_{\rm H} < 140 \,{\rm GeV} \, \Gamma_{\rm H}$ can be determined with similar accuracy without any assumptions
- for $m_{\rm H} > 140 \,{\rm GeV}$ the necessary analysis of of $e^+e^- \rightarrow \nu\nu{\rm H} \rightarrow \nu\nu{\rm WW}$ is not yet done

Indirect $\Gamma_{\rm H}$ at LHC:

- LHC can do an indirect measurement of $\Gamma_{\rm H}$ with 20% precision
- however several assumptions are needed for that
 - $-\operatorname{b-}\!\tau$ universality
 - $-\operatorname{W-Z}$ universality
 - no unexpected H-decays

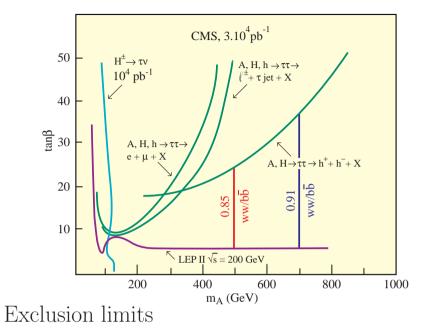
The Higgs width for $m_{\rm H} > 2m_{\rm W}$

- For $m_{\rm H} > 2m_{\rm W}$ the Higgs becomes very wide $(\Gamma_{\rm H} \propto m_{\rm H}^3)$
- $\Longrightarrow \Gamma_{\mathrm{H}}$ can be fitted from the resonance curve
- example $m_{\rm H} = 240 \,{\rm GeV}$
 - $-LHC: \Delta\Gamma_{\rm H}/\Gamma_{\rm H} = 25\%$ $-LC : \Delta\Gamma_{\rm H}/\Gamma_{\rm H} = 10\%$
 - improving with $m_{\rm H}$

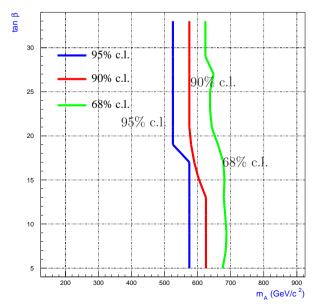
Interpretation in the MSSM:

$$m_A \gg m_Z \Rightarrow \beta - \alpha = \pi/2 - \eta \text{ with}$$
$$\eta = \frac{m_Z^2 |\cos 2\beta|}{m_A^2} \sin 2\beta$$
$$\Rightarrow \frac{\sin^2 \alpha}{\cos^2 \beta} = 1 - 2\eta \tan \beta$$
$$\sin^2(\beta - \alpha) = 1 - \eta^2$$
$$\frac{\cos^2 \alpha}{\sin^2 \beta} = 1 + 2\eta / \tan \beta$$

In addition for large m_A :


$$\eta \tan \beta = -\frac{m_Z^2 |\cos 2\beta| + m_h^2}{m_A^2}$$

For $\tan \beta > 2$ (suggested by LEP) $|\cos 2\beta| \approx 1$

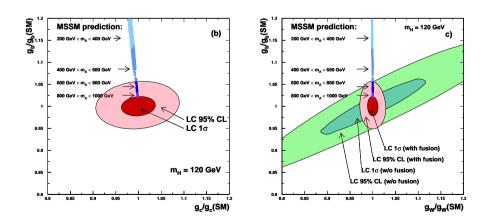

 $\Rightarrow \eta \tan\beta = -\frac{m_Z^2 + m_h^2}{m_A^2}$ independent of $\tan\beta$

- $BR(h \rightarrow b\bar{b})/BR(h \rightarrow W^+W^-)$ sensitive to m_A
- Effects on $BR(h \rightarrow c\bar{c})$ suppressed by $1/\tan\beta$ and knowledge of m_c

Quantitatively:

TESLA L = 500 fb $^{-1}$

Measurement of $\Gamma(H \to \gamma \gamma)$

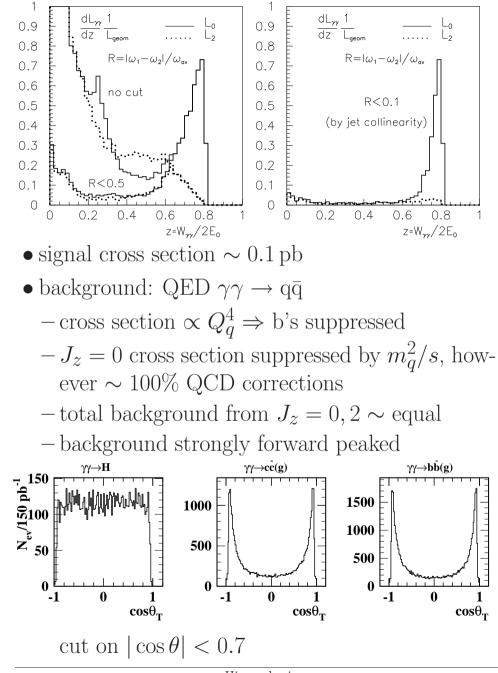

Determination of Higgs couplings

Measurement of Higgs BRs and total width allows determination of Higgs couplings:

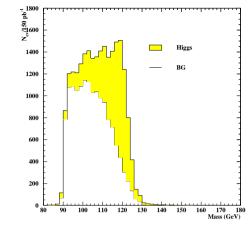
$$\begin{split} \Gamma(\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}) \; = \; & \mathrm{BR}(\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}) \cdot \Gamma_{\mathrm{H}} \\ & \propto \; g_{\mathrm{H} \to \mathrm{X}\overline{\mathrm{X}}}^2 \end{split}$$

Couplings are obtained from a fit to all related measurements

Model independent Higgs couplings can be compared to model predictions



- $H \rightarrow \gamma \gamma$ is loop induced process sensitive to couplings of heavy particles to the Higgs (e.g. stop heavier than 250GeV can give effects of > 10%)
- $BR(H \rightarrow \gamma \gamma)$ can be measured to ~ 10 15%for $m_{\rm H} = 120$ GeV, rapidly getting worse when Γ_H increases


Alternative: measure $\sigma(\gamma\gamma \rightarrow H)$ in photon-collider

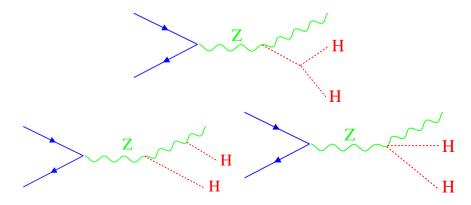
- cross section for $\sqrt{s_{\gamma\gamma}} = m_{\mathrm{H}}$: $\sigma(\gamma\gamma \to \mathrm{H} \to \mathrm{X}) = \frac{4\pi^2}{\mathrm{m}_{\mathrm{H}}^3}\Gamma(\mathrm{H} \to \gamma\gamma)\cdot\mathrm{BR}(\mathrm{H} \to \mathrm{X})(1+\lambda_1\lambda_2)$ $(\lambda_i = \text{helicity of photon } i)$
- $m_{\rm H}$ is already known when measurement is done \Rightarrow can tune $\gamma\gamma$ energy (peak of dist.) to $m_{\rm H}$
- \bullet analysis up to now done for light Higgs with H \rightarrow $\rm b\bar{b}$

Can adjust polarization to be mainly $J_z = 0$

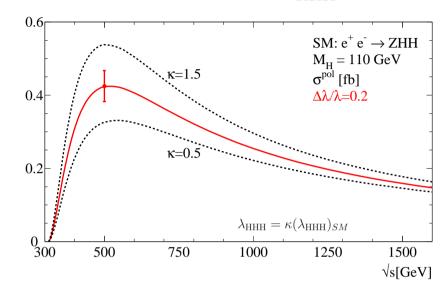
 $-\operatorname{background}$ more concentrated at lower masses

apply mass cuts

- $-\operatorname{suppress}$ light quarks completely and $c\bar{c}$ by factor 20 using b-tagging
- \bullet final purity \sim 40% with bb- and cc-background about equal
- for $\mathcal{L}_{\gamma\gamma}(0 < z < z_{\max}) = 150 \,\mathrm{fb}^{-1}$ corresponding to $\mathcal{L}_{\gamma\gamma}(0.65 < z < z_{\max}) = 43 \,\mathrm{fb}^{-1}$ corresponding to $\mathcal{L}_{\mathrm{ee}} = 200 \,\mathrm{fb}^{-1}$ about 8000 signal events are selected

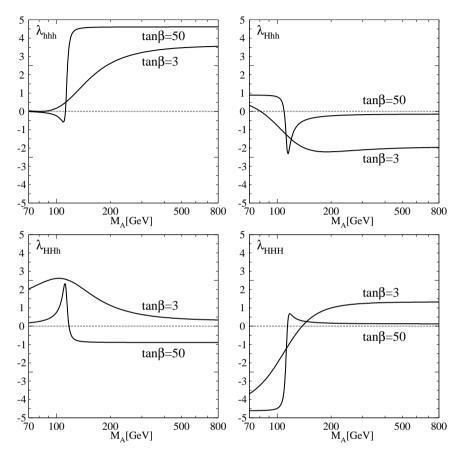

$$\frac{\Delta\Gamma(H\to\gamma\gamma)BR(H\to b\bar{b})}{\Gamma(H\to\gamma\gamma)BR(H\to b\bar{b})} \approx 2\%$$

$$= \text{with } \Delta BR(H\to b\bar{b}) = 2.4\%: \frac{\Delta\Gamma(H\to\gamma\gamma)}{\Gamma(H\to\gamma\gamma)} \approx 3\%$$

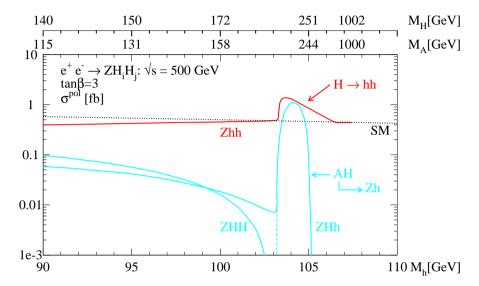

Measurement of the Higgs self-couplings

- Higgs potential $V(\Phi) = \lambda (\Phi^* \Phi v^2/2)^2$
- \bullet Inside the SM completely known once $m_{\rm H}$ is measured
- Have to reconstruct the Higgs potential as much as possible to prove that the Higgs is really responsible for electroweak symmetry breaking
- trilinear Higgs coupling: $\lambda_{\text{HHH}} = 3m_{\text{H}}^2/m_{\text{Z}}^2\lambda_0, \ \lambda_0 = m_{\text{Z}}^2/v$
- quadrilinear Higgs coupling: $\lambda_{\text{HHHH}} = 3m_{\text{H}}^2/m_{\text{Z}}^4\lambda_0$
- trilinear coupling can be seen at LC, quadrilinear coupling too small

Processes for $e^+e^- \rightarrow ZHH$:


Cross section and sensitivity to λ_{HHH} :

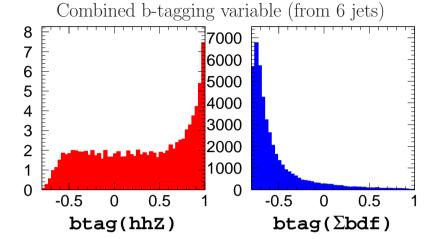
For a light Higgs it should be possible to establish Higgs-self-coupling with $\sqrt{s} = 500 \,\text{GeV}$ and several hundred fb⁻¹ luminosity


For heavier Higgses WW fusion can take over

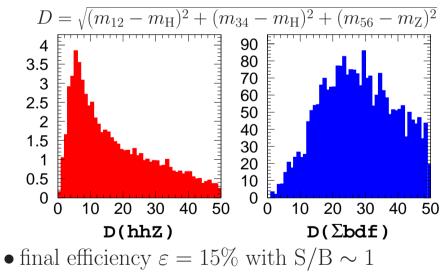
Situation more complicated in SUSY

(hAA, HAA couplings generally small) Has to be folded with Zhh (ZHH) coupling (SM: $\lambda \approx 5$)

Some effects should remain visible

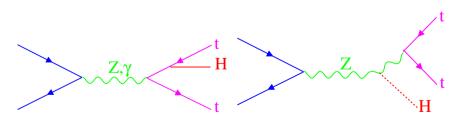


- Experimental SM analysis exists
- SUSY analysis to be done

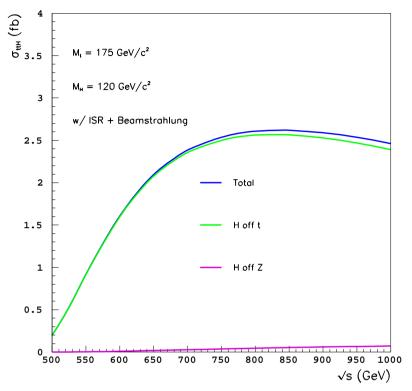

Experimental analysis of HHH-coupling

- Assume $\sqrt{s} = 500 \text{ GeV}, \ \mathcal{L} = 500 \text{ fb}^{-1}, \ m_{\text{H}} = 100 \text{ GeV}$
- Signal $e^+e^- \rightarrow ZHH \rightarrow b\bar{b}b\bar{b}f\bar{f} \sigma \sim 0.5 \,fb$
- Background: after preselection $\sim 500 \times \text{signal}$ (WW, Z γ , ZZ, WWZ, ZZZ, hZ)

• Key: b-tagging



 \bullet plus topological cuts after constrained fit



- final backgrounds mainly $Z(\gamma)$, WW, ZZ, ZZZ; 75% with one $Z \rightarrow t\bar{t}$ or $W \rightarrow t\bar{b}$
- $\rightarrow \Delta \lambda / \lambda \approx 0.2$ is possible

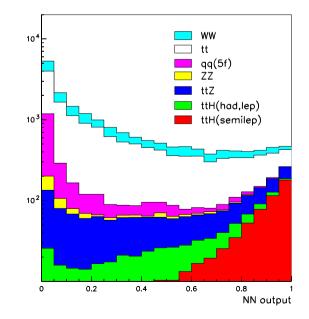
- If the Higgs is responsible for mass generation its couplings should be proportional to the particle mass
- The couplings HZZ, HWW are known from the cross sections $e^+e^- \rightarrow ZH$ and WW $\rightarrow H$
- The Yukawa couplings Hbb, Hcc, $H\tau^+\tau^-$ can be obtained from the partial decay widths
- The top-Yukawa coupling is especially interesting since $g_{\rm ttH} \sim 1$ and the top-quark plays a special role in some theories
- \bullet A \sim 35% estimate of the top-Yukawa coupling can be obtained from the tt-threshold scan
- \bullet The top-Yukawa coupling can be measured from tterf- events

Cross section:

Event signatures:

 $t\bar{t}H \rightarrow WbWbb\bar{b} \rightarrow 4q4b, 2q\ell\nu4b$ (2($\ell\nu$) events and H decays not to $b\bar{b}$ are not considered)

Assumptions:

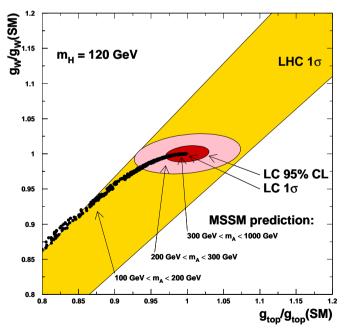

 $\sqrt{s} = 800 \,\text{GeV}, \,\mathcal{L} = 1000 \,\text{fb}^{-1}, \,\text{m}_{\text{H}} = 120 \,\text{GeV}$

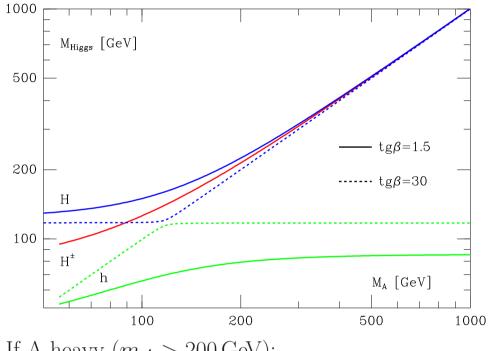
Example: $2q\ell\nu 4b$ analysis

- start with preselection cuts, mainly to separate "round" from "jetty" events
- \bullet after preselection

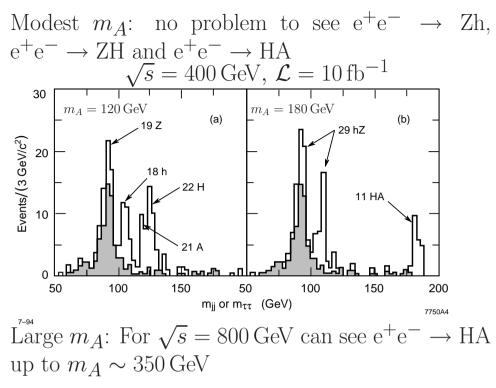
Signal ($\varepsilon = 54\%$)	$0.61\mathrm{fb}$
Most dangerous backgrounds:	
$t\overline{t}$	$10.97\mathrm{fb}$
WW	$4.05\mathrm{fb}$
Total background:	$17.59\mathrm{fb}$

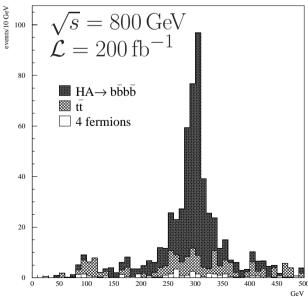
Process events with neural network including event shapes, b-tagging, lepton-id

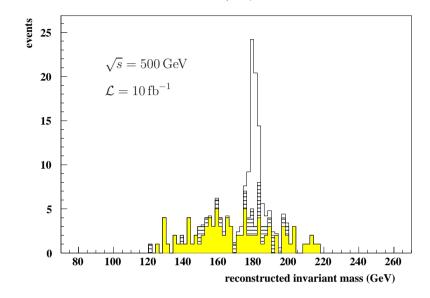



Other SUSY Higgses

Masses of Higgs bosons:

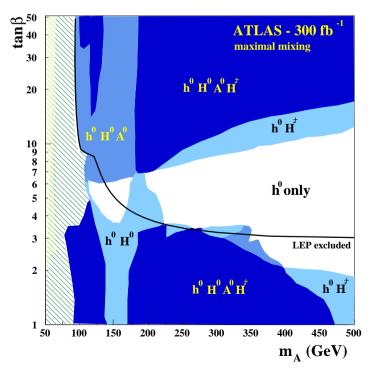

<u>Results:</u>


- Can achieve S/B = 0.5 with $\varepsilon = 27\%$
- ➡ $\Delta g_{ttH} = \pm 5.1\%$ (stat) $\pm 3.8\%$ (syst) for 5% error on background normalization
- slightly worse results in fully hadronic channel
- total error of $\Delta g_{\rm ttH} = \pm 5.5\%$ seems possible
- $\bullet \sim$ factor 3 better than LHC



- If A heavy $(m_A > 200 \text{ GeV})$:
- $\sin^2(\beta \alpha) \approx 1 \Rightarrow$
 - $-\,\mathrm{h}$ is SM like
 - $-\,\mathrm{H}$ produced mainly in $\mathrm{e^+e^-} \to \mathrm{HA}$
- H,A,H^{\pm} almost degenerate in mass
- if $m_A > \sqrt{s}/2$ only h can be seen if $m_A < \sqrt{s}/2$ full spectrum in reach

Charged Higgses can be detected, independent of the decay mode up to $\sim 80\%\sqrt{s}/2$ with low luminosity:



$\gamma\gamma$ collider

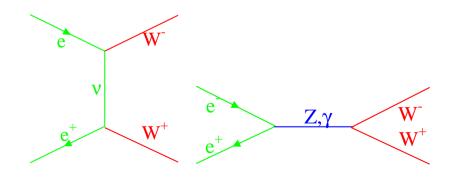
- Higgses are produced singly
- $\sqrt{s_{max}} \approx 0.8 \sqrt{s_{ee}}$
- \bullet can see H,A up to 650 GeV for $\sqrt{s}_{ee} = 800 \, {\rm GeV}$

Heavy SUSY Higgses at LHC

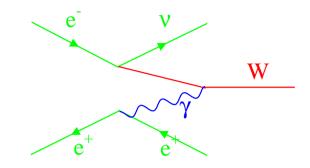
- \bullet LHC results are very dependent on $\tan\beta$
- \bullet tan β small: (almost) excluded by LEP \rightarrow ignore
- \bullet tan β large: H,A-Strahlung off b-quark largely enhanced
 - \Rightarrow can see H,A in $b\bar{b}\tau^+\tau^-$ events up to fairly high masses
- $\tan \beta$ moderate: "wedge region" no heavy Higgses seen (however there are chances if the Higgses decay into SUSY particles)

- Summary Higgs physics
- A SM-like Higgs definitely will be discovered at LHC
- If a Higgs exists in the LC energy range, it will be seen
- The task of the LC will be to measure the properties of the Higgs and to show that it is really responsible for electroweak symmetry breaking.
- The present analyzes mostly assume a light Higgs, for a heavier Higgs they have to be redone replacing a bb-pair by a W-pair.
- \bullet The Higgs-mass can be measured to $\approx 50\,{\rm MeV}$
- The Higgs couplings to heavier fermions and to gauge bosons can be measured at the few percent level
- The trilinear Higgs-coupling can be established on the 20% level
- Not covered here: One can construct exotic models, where the LHC doesn't see the Higgs, but the LC still can

Electroweak Gauge-Bosons


- Introduction
- \bullet Measurement of the W-mass \rightarrow later
- Triple gauge-couplings
- \bullet Strong interaction of electroweak gauge bosons

Introduction


- Self-interactions among gauge-bosons are directly given by structure of gauge group
- ➡ study of gauge-boson interactions can show details of the gauge group.

Two main classes of processes:

Pair production (e.g. W pairs):

Fusion processes (e.g. single W production):

Or combination of both for quartic couplings Pair production:

- \bullet Cross sections fall like 1/s
- \bullet The scale of the interesting interaction is \sqrt{s}
- \bullet the events are fully contained in the detector

Fusion processes:

- \bullet the total cross section rises with energy
- \bullet the scale of the interesting interaction remains low
- particles from the incoming fermion are often lost in the beampipe or as neutrinos

Triple gauge couplings

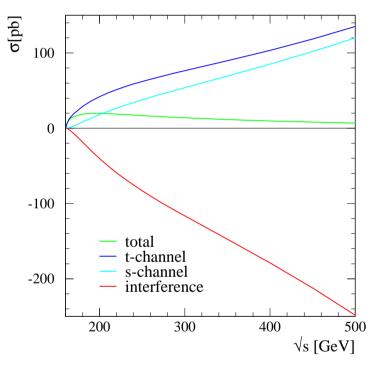
Usual parameterization for WWV (V=Z, γ) couplings:

$$\begin{split} i\mathcal{L}_{eff}^{WWV} &= g_{WWV} \cdot [\\ g_{1}^{V} V^{\mu} (W_{\mu\nu}^{-} W^{+\nu} - W_{\mu\nu}^{+} W^{-\nu}) + \\ \kappa_{v} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \\ \frac{\lambda_{V}}{m_{W}^{2}} V^{\mu\nu} W_{\nu}^{+\rho} W_{\rho\mu}^{-} + \\ ig_{5}^{V} \epsilon_{\mu\nu\rho\sigma} \left((\partial^{\rho} W^{-\mu}) W^{+\nu} - \\ W^{-\mu} (\partial^{\rho} W^{+\nu}) \right) V^{\sigma} + \\ ig_{4}^{V} W_{\mu}^{-} W_{\nu}^{+} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - \\ \frac{\tilde{\kappa}_{V}}{2} W_{\mu}^{-} W_{\nu}^{+} \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} - \\ \frac{\lambda_{V}}{2m_{W}^{2}} W_{\rho\mu}^{-} W^{+\mu}_{\nu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta}] \end{split}$$

With $V = \gamma$, Z, $g_{WW\gamma} = e$, $g_{WWZ} = e \cot \theta_W$ and $V_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$ Gauge invariance: $g_1^{\gamma}(q^2 = 0) = 1$, $g_5^{\gamma}(q^2 = 0) = 0$ SM: $g_1^V = \kappa_V = 1$ all other couplings = 0 Static quantities:

- magn. dipole-moment: $\mu_W = \frac{e}{2m_W}(1 + \kappa_\gamma + \lambda_\gamma)$
- elec. quadr.-moment: $q_W = -\frac{e}{m_W^2}(\kappa_\gamma \lambda_\gamma)$

Symmetries:


- g_1 , κ , λ C,P-conserving
- g_5 C,P-violating, CP-conserving
- $g_4, \tilde{\kappa}, \tilde{\lambda}$ CP-violating

Expect largest experimental sensitivity and largest deviations in C,P-conserving couplings

 \implies mainly studied up to now

However construction of C,CP-violating observables measures the other couplings independent from the C,P-conserving ones Gauge cancellations:

- W-pair production via t-channel ν-exchange and s-channel Z,γ-exchange violates unitarity individually
- unitarity gets restored by s-t interference

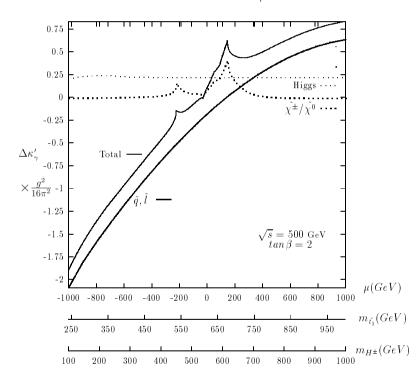
 \implies sensitivity increases with energy

 \blacktriangleright anomalous couplings have to vanish for $\sqrt{s} \to \infty$

LC:

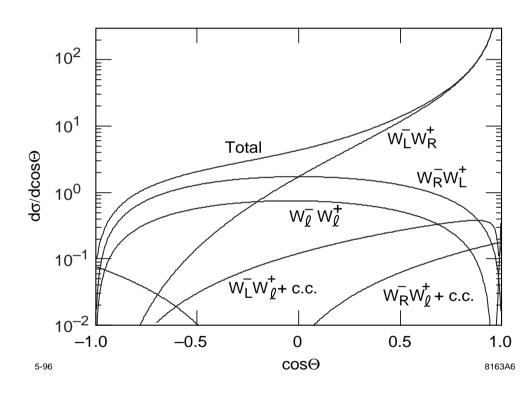
- main sensitivity from W-pair production
- \Longrightarrow measurement of TGCs at fixed scale (= $\sqrt{s})$
- ➡ take energy dependence into account in interpretation of results

LHC:

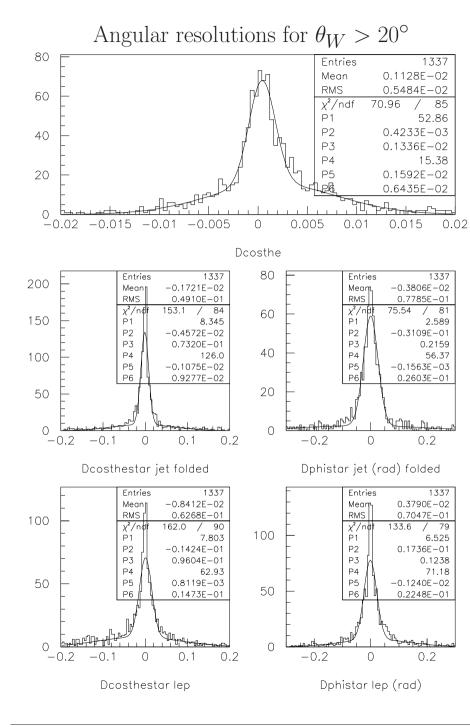

- \bullet main sensitivity in W γ and WZ pair production
- \sqrt{s} varies event by event due to PDFs
- ➡ have to take energy dependence into account in analysis
- typically regularize coupling by form factor: $x' = \frac{x}{(1+s/\Lambda^2)^n}, n > 0.5 \text{ for } \Delta \kappa, n > 1 \text{ for } \lambda$
- Λ can be viewed as scale where new physics sets in, so it makes sense to compare experiments for very high Λ
- in case anomalous couplings are found, have to measure detailed shape with \sqrt{s} (LHC+LC!)

Theoretical expectations:

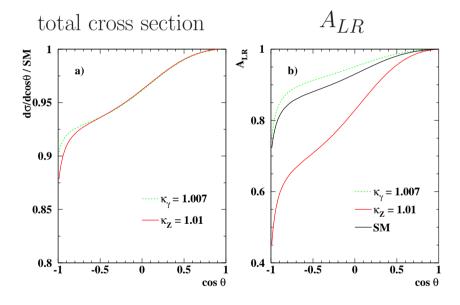
Triple gauge couplings should be modified on 1-loop level


 \Rightarrow expect deviations of order $g^2/16\pi^2\approx 2.7\cdot 10^{-3}$

E.g. MSSM contributions to $\Delta \kappa_{\gamma}$:


Experimental analyzes (all very similar to LEP II)

- sensitive quantities
 - $-\operatorname{cross}$ section
 - -W-production angle
 - $-\,\mathrm{W}$ polarization \rightarrow W-decay angles


- huge peak in forward region, insensitive to anomalous coupling
 - \Rightarrow cross section dependence contained in angular dependence

- Ws have much larger boost than at LEP:
 - $-\operatorname{the}$ two Ws are well separated
 - the resolution in the production angle is better than at LEP \rightarrow plot
 - the resolution in the decay angles is somewhat worse \rightarrow plot
 - however detector resolution does not effect the analysis strongly
- up to now only mixed decays WW $\rightarrow \ell \nu q \bar{q}'$
 - $-\operatorname{about}\sim40\%$ of the statistics
 - $-W^+, W^-$ can be separated without ambiguity
 - decay angles of leptonically decaying W can be measured without ambiguity
 - decay angles of hadronically decaying W can be measured with twofold ambiguity
- analysis methods similar as at LEP: optimal observables, spin density matrix, maximum likelihood fits
- \bullet expect factor 100 smaller errors
 - $-\,{\rm factor}$ 10 from sensitivity \rightarrow applies also to systematics
 - $-\,{\rm factor}$ 10 from luminosity \rightarrow have to improve systematics by that amount

Separation of WW γ and WWZ couplings

- for the W-pairs WW γ and WWZ couplings cannot be separated from the event information
- however initial state $e^+e^-\gamma$ and e^+e^-Z couplings are different for different electron polarization
- ► can use beam polarization to separate the two

- (for fits relating the WW γ and WWZ couplings polarization also reduces the error by more than a factor 2)
- in addition single W production, $e\gamma$ and $\gamma\gamma$ collider measure WW γ coupling only

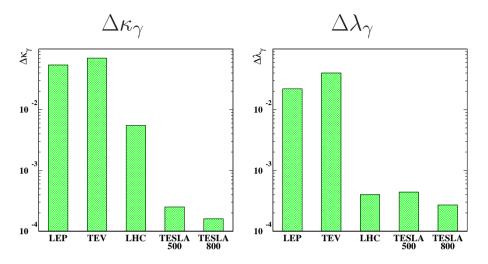
Results:

Statistical precision for $\sqrt{s} = 500 \,\text{GeV}$, $\mathcal{L} = 500 \,\text{fb}^{-1}$, $\mathcal{P}_{e^-} = \pm 80\%$: $\Delta \kappa_{\gamma}, \Delta \kappa_{Z}, \Delta \lambda_{\gamma}, \Delta \lambda_{Z} \approx (3-4) \times 10^{-4}$ $\Delta g_{1}^{Z} \approx (8-13) \times 10^{-4}$

depending on the number of fit parameters

 $\sqrt{s} = 800 \,\text{GeV} \, \sim \text{factor} \, 2 \text{ better}$

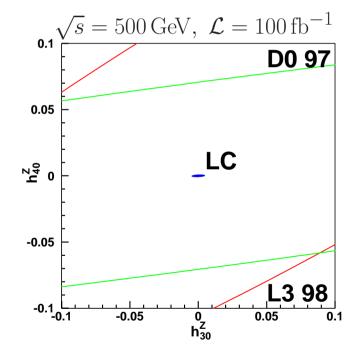
Systematics:


- \bullet ISR needs to be known to the 1% level
- \bullet beamstrahlung seems no problem
- \bullet detector effects should also be under control due to better θ_W resolution
- with the standard parameterization polarization can be obtained from $A_{\rm LR}$ in forward peak

CP-violating couplings

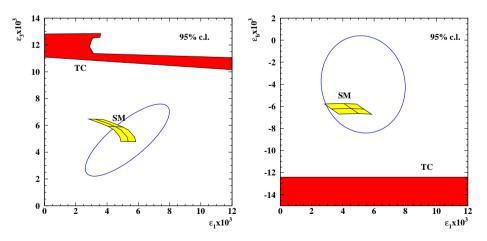
$$\Delta \tilde{\kappa}, \Delta \tilde{\lambda} = (1-2) \times 10^{-2}$$

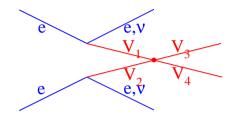
from CP-odd observables


Comparison with LHC etc.:

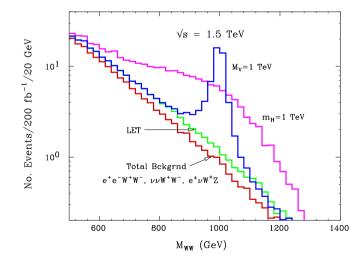
- \bullet LC much better than LHC for $\kappa,$ somewhat better for λ
- if new physics scale is high, effects are expected in κ because of lower dimension
 bin advantage for LC
 - ➡ big advantage for LC
- if new physics scale is low, both couplings can show effects and LHC probes at higher scales where new physics might be visible directly
 advantage for LHC
- if some effect is found somewhere it is definitely invaluable to have complementary information

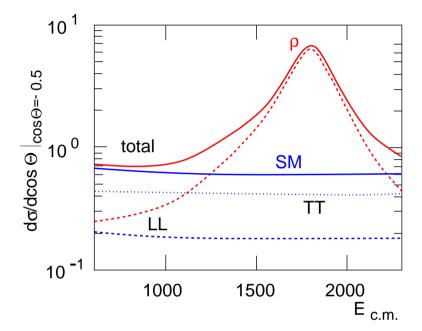
Measurements of neutral TGCs


- \bullet neutral TGCs forbidden in the SM at loop level
- possible anomalous couplings only come in at higher dimensions (8)
- studies exist e.g. for γ ZZ- and $\gamma\gamma$ Z-couplings in $Z\gamma$ events with high p_t photons
- dramatic improvement compared to existing machines


• however still factor 10 worse than SM prediction and LHC

Strong Electroweak Symmetry Breaking


- If no Higgs exists electroweak interactions become strong at high energy and e.g. WW scattering violates unitarity at $\sqrt{s_{WW}} \sim 1.2$ TeV.
- \Longrightarrow expect new effects at this energy
- Typical models invoke a new strong interaction at the TeV scale (Technicolor)
- The Goldstone-bosons (Pions) of the new theory become the longitudinal degrees of freedom of the vector-bosons
- Warning: simple copy of QCD is excluded by LEP/SLD precision data


- interpretations within this model are certainly a very useful indication but should not be taken literally, however no other concrete model exists
- most intuitive channel: VV scattering V=W,Z

- ideally find resonances (like ρ , ω , etc.)
- however also if no resonances are found the LET says that longitudinal VV-scattering at high energy behaves like $\pi\pi$ -scattering at low energy

also in W-pair production effects from J=1 resonances should be visible (like in $e^+e^- \rightarrow \rho \rightarrow \pi^+\pi^-$)

with high precision resonance effects remain visible at lower energy

Systematic approach: Effective Lagrangian

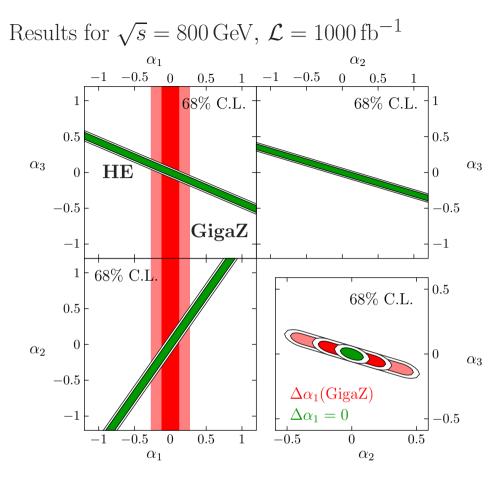
- symmetry breaking is realized non-linearly
- expand Lagrangian in the dimension of the field operators $(\propto \sqrt{s})$
- keep lowest order that contains analyzed interaction

Trilinear couplings:

$$\mathcal{L}_{TGC} = \frac{\alpha_1}{16\pi^2} \frac{gg'}{2} B_{\mu\nu} \operatorname{tr}(\sigma_3 W^{\mu\nu}) + \frac{\alpha_2}{16\pi^2} \operatorname{i} g' B_{\mu\nu} \operatorname{tr}(\sigma_3 V^{\mu} V^{\nu}) + \frac{\alpha_3}{16\pi^2} 2\operatorname{i} g \operatorname{tr}(W_{\mu\nu} V^{\mu} V^{\nu})$$

Strong interaction:

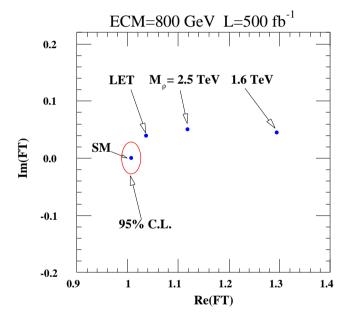
$$\frac{\alpha_i}{16\pi^2} = \left(\frac{v}{\Lambda_i^*}\right)^2$$


Unitarity requires:

 $\Lambda^* \approx 3 \,\mathrm{TeV}$

 α 's can be expressed in terms of g_1 , κ :

$$\begin{split} \Delta g_1^Z \ &= \ \frac{e^2}{\cos^2 \theta_W (\cos^2 \theta_W - \sin^2 \theta_W)} \frac{\alpha_1}{16\pi^2} + \frac{e^2}{\sin^2 \theta_W \cos^2 \theta_W} \frac{\alpha_3}{16\pi^2} \\ \Delta \kappa_\gamma \ &= \ -\frac{e^2}{\sin^2 \theta_W} \frac{\alpha_1}{16\pi^2} + \frac{e^2}{\sin^2 \theta_W} \frac{\alpha_2}{16\pi^2} + \frac{e^2}{\sin^2 \theta_W} \frac{\alpha_3}{16\pi^2} \\ \Delta \kappa_Z \ &= \ \frac{2e^2}{\cos^2 \theta_W - \sin^2 \theta_W} \frac{\alpha_1}{16\pi^2} - \frac{e^2}{\cos^2 \theta_W} \frac{\alpha_2}{16\pi^2} + \frac{e^2}{\sin^2 \theta_W} \frac{\alpha_3}{16\pi^2} \end{split}$$


System is degenerate, but α_1 can be tightly constrained with m_W and $\sin^2 \theta_{eff}^l$ measurements at GigaZ

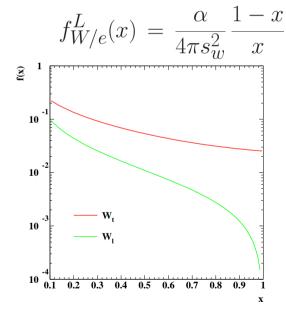
 α -limits correspond to $\Lambda^* = \mathcal{O}(10 \text{ TeV}) \gg 3 \text{ TeV}$ SEWSB should be seen in triple gauge couplings at LC

Analysis within technicolor models

- Parameterize $e^+e^- \rightarrow WW$ with a form factor similar to $e^+e^- \rightarrow \pi^+\pi^-$
- \bullet can predict form factor as a function of m_ρ
- LET is limit for large m_{ρ}

- Linear Collider is sensitive to techni- ρ masses up to ~ 2.5 TeV and can distinguish LET from SM
- \bullet The LHC has a similar reach
- however the information is very complementary since the LHC measures the mass of a resonance and the LC measures the couplings

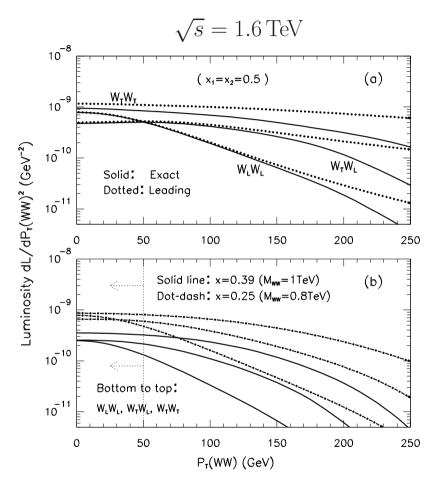
Quartic couplings:


Luminosity spectrum of "W beam":

Effective W approximation

• Transversely polarized Ws:

$$f_W^T(x) = \frac{\alpha}{4\pi s_w^2} \frac{1 + (1 - x)^2}{2x} \ln \frac{xs}{M_W^2}$$


• Longitudinally polarized Ws:

(Calculations use improved W spectra)

Longitudinal Ws are suppressed in the interesting region at large **x**

Suppression is mainly at large p_t

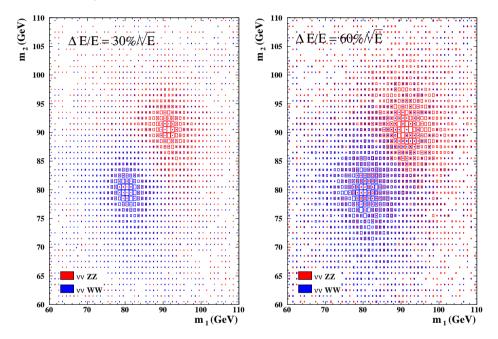
Have to cut low p_t to reject $\gamma \gamma \rightarrow W^+W^-$ background Effective Lagrangian:

Two terms not already constrained by TGCs:

$$\mathcal{L}_{4} = \frac{\alpha_{4}}{16\pi^{2}} \left[\frac{g^{4}}{2} \left[(W_{\mu}^{+}W^{-\mu})^{2} + (W_{\mu}^{+}W^{+\mu})(W_{\nu}^{-}W^{-\nu}) \right] + \frac{g^{4}}{c_{w}^{2}} (W_{\mu}^{+}Z^{\mu})(W_{\nu}^{-}Z^{\nu}) + \frac{g^{4}}{4c_{w}^{4}} (Z_{\mu}Z^{\mu})^{2} \right]$$

$$\mathcal{L}_{5} = \frac{\alpha_{5}}{16\pi^{2}} \left[g^{4} (W_{\mu}^{+}W^{-\mu})^{2} + \frac{g^{4}}{c_{w}^{2}} (W_{\mu}^{+}W^{-\mu})(Z_{\nu}Z^{\nu}) + \frac{g^{4}}{4c_{w}^{4}} (Z_{\mu}Z^{\mu})^{2} \right]$$

Again with $\frac{\alpha_i}{16\pi^2} = \left(\frac{v}{\Lambda_i^*}\right)^2$

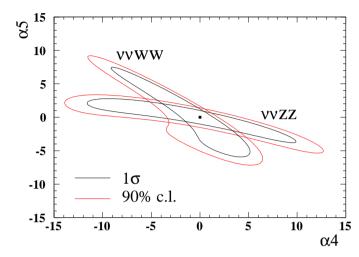

Three sensitive observables for two unknowns:

$$e^+e^- \rightarrow \nu\nu W^+W^-$$
$$e^+e^- \rightarrow \nu\nu ZZ$$
$$e^-e^- \rightarrow \nu\nu W^-W^-$$

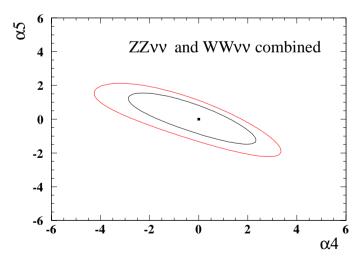
Analysis:

Select $e^+e^- \rightarrow \nu\nu VV$ events at $\sqrt{s} = 800 \text{ GeV}$

(very good energy flow resolution needed to separate W and Z)



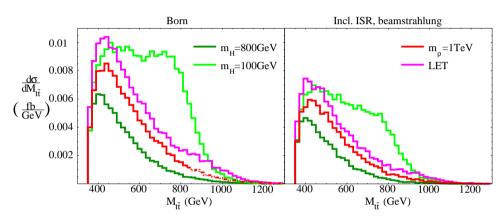
Analyze differential in terms of


- V-decay angles (to select longitudinal V-polarization)
- V-scattering angle (to select hard scattering)
- \bullet VV invariant mass

<u>Results:</u>

Single channels give limits of about $\alpha_i < 10$

Combination of the two channels improves limits to about $\alpha_i < 1$


Signal in $W^+W^- \to t\bar{t}$

For single parameter fits one gets

 $\begin{array}{l} \Lambda_4^* > 2.9 \, \mathrm{TeV} \\ \Lambda_5^* > 4.9 \, \mathrm{TeV} \end{array}$

- \bullet limits ~factor 1.5 better than LHC
- however weak signals, so all possible redundancy needed
- dramatic improvements, if \sqrt{s} can be increased
- \bullet LHC can see resonances up to $m \sim 1-2\,{\rm TeV}$ dependent on width
- → In such a situation the LC could do a precise measurement of quantum numbers and couplings

- the mechanism simulating the Higgs must also couple to fermions to produce fermion masses
- \implies should see a signal in W⁺W⁻ \rightarrow tt
 ¯
- 1st analysis exists at $\sqrt{s} = 1.5 \text{ TeV}$

- different models can be separated by > 10σ with $\mathcal{L} = 200 \,\mathrm{fb}^{-1}$
- additional information in t-polarization, but not yet fully analyzed
- also here the LHC is sensitive to resonances up to $\sim 2 \,\text{TeV}$

Conclusions Gauge-Boson-interactions

- For triple gauge couplings involving Ws the LC has a unique sensitivity to loop corrections and to a strongly interacting weak sector.
- For purely neutral couplings the sensitivity is still an order of magnitude worse than the expected effects and than the LHC expectation.
- There is a very high chance that the LC can see effects if electroweak symmetry breaking is realized in a strongly interacting scenario.
 - If there are resonances in the LHC region, the LHC is the better machine.
 - If there are no resonances the LHC and an 800 GeV LC have comparable statistical power, where the LC-backgrounds should be easier to calculate.

6 Supersymmetry

- In the SM enormous fine-tuning is required to keep $m_{\rm H}$ in the 100 GeV range
- Way out: couple bosons and fermions to protect $m_{\rm H} \rightarrow$ Supersymmetry
- the quadratic divergences of fermion- and sfermion-loops cancel
 - \Rightarrow Higgs remains light
- Particle content:
- all known particles
- SUSY needs two Higgs doublets to give masses to up- and down-type particle
 - \Rightarrow 5 Higgs particles \rightarrow Higgs section
- each fermion has a scalar partner (where left- and right-handed fermions have to be counted separately)
- each boson has a fermionic partner:
 - Two charginos $\chi^{\pm}_{1,2}$ $(m_{\chi^{\pm}_1} < m_{\chi^{\pm}_2})$, partner of W^{\pm}, H^{\pm} , mixed
 - $\begin{array}{l} -\operatorname{Four neutralinos} \ \chi^0_{1,2,3,4} \ (m_{\chi^0_1} < \ldots < m_{\chi^0_4}),\\ \text{partner of } \gamma, Z, h, H, \text{mixed} \\ -\operatorname{gluinos} \ (\tilde{g}), \operatorname{gravitino} \ (\tilde{G}) \end{array}$

However $m_{\text{Particle}} \neq m_{\text{Partner}} \Rightarrow \text{SUSY}$ is broken

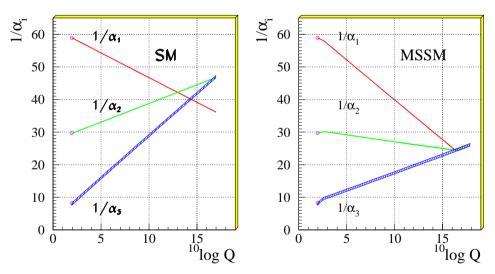
Need $m_{\rm SUSY} < 1 {\rm TeV}$ to solve hierarchy-problem

In general > 100 new free parameters \Rightarrow have to make some assumptions how they are correlated

SUSY-breaking parameters in the minimal model (MSSM):

- U(1), SU(2), SU(3) Gaugino-masses $M_{1,2,3}$
- \bullet Higgsino mass-parameter μ
- Scalar-masses m_i (or universal m_0)
- Sfermion-Higgs couplings A_i, B_i

R-parity $R = (-1)^{2S+L+3B}$


- SUSY-particles only in pairs
- lightest SUSY particle (LSP) is stable
- Excellent dark matter candidate

R-parity can also be broken

- very rich phenomenology
- however care has to be taken to avoid proton decay

Other virtues of SUSY:

- SUSY can be a new source of CP-violation
 may explain the matter/anti-matter asymmetry in the universe
- String theories are the only known way to connect gravity with quantum mechanics
 - \implies all string theories are supersymmetric
- \bullet SUSY enables unification of forces at a high scale

SUSY breaking schemes

Gravity mediated SUSY breaking

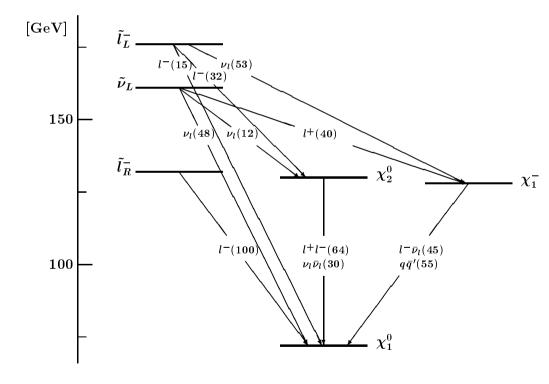
- SUSY is broken at a high scale by gravitational interaction to a hidden sector
- Gauge coupling unification at the GUT scale $(m_{\rm GUT} \sim 10^{16} \,{\rm GeV})$ possible
- Common gaugino mass $m_{1/2}$ at m_{GUT} $\Rightarrow \frac{M_1}{\alpha_1} = \frac{M_2}{\alpha_2} = \frac{M_3}{\alpha_3}$ at the weak scale
- \bullet often also universal scalar mass m_0 assumed
- slepton masses:

$$M_{\tilde{\nu}}^{2} = m_{0}^{2} + 0.77M_{2}^{2} + 0.5m_{Z}^{2}\cos 2\beta$$

$$M_{\tilde{\ell}_{L}}^{2} = m_{0}^{2} + 0.77M_{2}^{2} - 0.27m_{Z}^{2}\cos 2\beta$$

$$M_{\tilde{\ell}_{R}}^{2} = m_{0}^{2} + 0.22M_{2}^{2} - 0.27m_{Z}^{2}\cos 2\beta$$

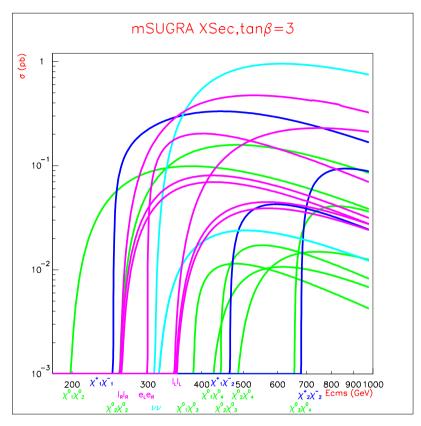
- squark masses similar with M_3^2 term
- \bullet L-R sfermion mixing $\propto m_f (A_f \mu \tan\beta)$ only relevant for 3rd generation
- chargino mass matrix


$$\mathcal{M}_{\chi} = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos\beta \\ \sqrt{2}m_W \sin\beta & \mu \end{pmatrix}$$

detailed properties of $\chi^{\pm}_{1,2}$ (gaugino-,Higgsino-like) depend on values of parameters

 \bullet neutralinos similar

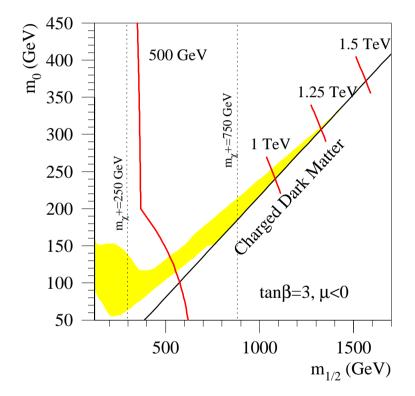
"Typical" mass spectrum


$$(m_0 = 100 \text{ GeV}, m_{1/2} = 200 \text{ GeV})$$

 $m_{\chi_1^0} \sim 70 \text{ GeV}$
 $m_{\chi_1^\pm, \chi_2^0} \sim 130 \text{ GeV}$
 $m_{\chi_2^\pm, \chi_{3,4}^0} \sim 350 \text{ GeV}$
 $m_{\tilde{\ell}} \sim 150 \text{ GeV}$
 $m_{\tilde{q}} \sim 430 \text{ GeV}$

of course all moves with m₀, m_{1/2}
m_{t̃1} can be moved arbitrarily by changing A

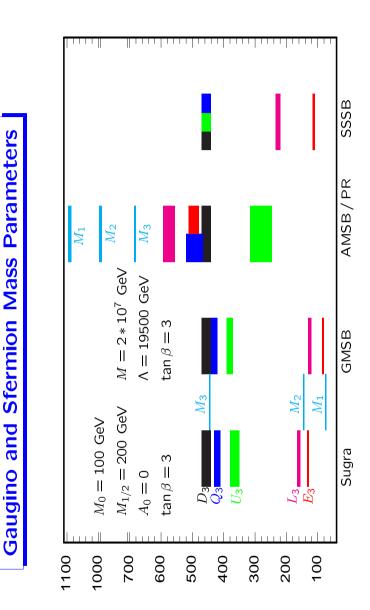
SUSY-5


typical cross sections:

- \bullet all channels have cross sections $\sim 10-1000\,{\rm fb}$
- \bullet all channels have visible decays of at least 50%

Where do we expect SUGRA?

- \bullet naturalness suggest
s $\tilde{m} < 1\,\text{TeV},$ however only logarithmic dependence
- recent analysis looks into correct neutralino density as dark matter


- \bullet "natural" region predicts SUSY well below 500 GeV
- however some tails due to coannihilation
- \bullet mostly covered at 1 TeV

Gauge mediated SUSY breaking

- SUSY is broken at intermediate scales $(10^3 10^8 \,\text{GeV})$ by gauge interactions involving messengers between the visible and the hidden sector
- main free parameters:

 $\begin{array}{ll} M_{\rm mess} & {\rm messenger \ mass \ scale} \\ N_{\rm mess} & {\rm number \ of \ messenger \ generations} \\ \Lambda & {\rm universal \ soft \ braking \ scale} \\ {\rm tan \ }\beta \\ {\rm sign}(\mu) \end{array}$

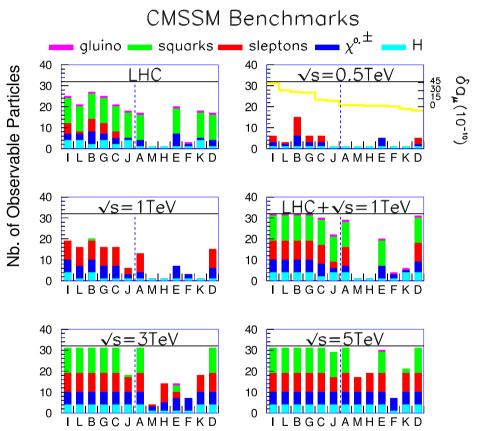
- \bullet main differences to SUGRA
 - $-\,{\rm very}$ light gravitino $\sim\,{\rm eV}$
 - NLSP either χ_1^0 with $\chi_1^0 \to \tilde{G}\gamma$ or $\tilde{\ell}$ with $\tilde{\ell} \to \tilde{G}\ell$ (if mixing is large in 2nd case, $\tilde{\tau}_1$ is NLSP) in both cases NLSP lifetime can be significant
 - sfermion masses $\propto \alpha_i,\,i=$ QED, QCD
 - \Rightarrow larger mass splitting between sleptons and squarks

The complementarity LC/LHC

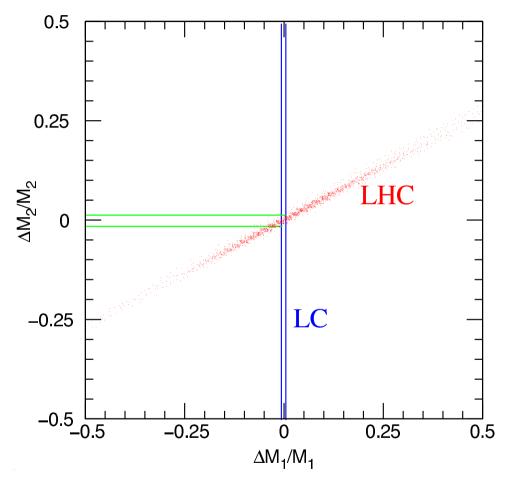
LHC:

- Mass reach $\mathcal{O}(1 \,\mathrm{TeV})$
- \bullet Squarks are produced strongly \Rightarrow huge cross section
- Sleptons and gauginos are produced weakly or in cascades \Rightarrow maybe difficult to see
- LSP cannot be reconstructed completely due to missing information \Rightarrow mainly sensitive to mass differences

LC:

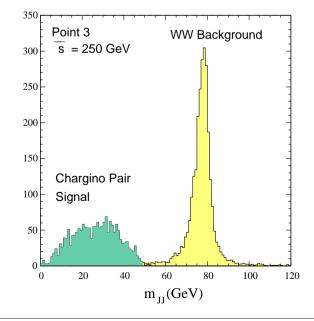

• all SUSY processes within mass reach have similar cross section

 \Rightarrow all particles can be cleanly reconstructed


- LSP can be reconstructed from kinematic quantities \Rightarrow all masses can be measured absolute
- all particles are produced in electroweak processes that can be calculated accurately ⇒ particle couplings can be measured
- squarks and gluinos are probably too heavy to be produced at LC

LC+LHC:

If SUSY light enough all masses and the lepton and gaugino couplings can be measured with good precision



Example: $m(\chi_1^0) - m(\chi_2^0)$ from LHC combined with $m(\chi_1^0)$ from LC

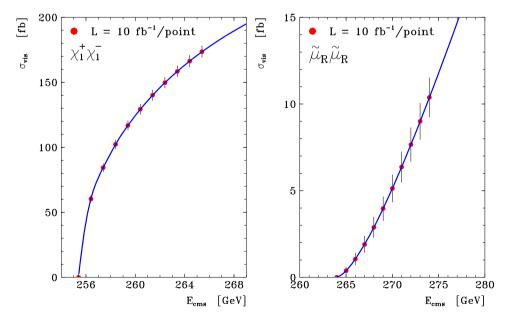
SUGRA signals:

- \bullet due to stable LSP always missing mass and missing p_t
- most simple decay $\tilde{f} \to f \chi_1^0$: two identical lept. or jets and missing mass and p_t
- decay $\chi_i \to f f' \chi_j$: four leptons/jets and missing mass and p_t
- in general cascade decays can have many leptons+jets
- good detector resolution separates SUSY-signals from known physics

GMSB signals:

- if the NLSP lifetime is large: like SUGRA
- due to NLSP decay the missing quantities are smaller
- \bullet this is compensated by the additional visible $\gamma/{\rm lepton}$

Signals with R-parity violation:


- \bullet The LSP decays into ordinary particles
 - \Longrightarrow also LSP pair productions is visible
 - \Longrightarrow the LSP needs not to be neutral
- \bullet SUSY breaking can be in any scheme
- experimentally the missing mass/energy is replaced by LSP-reconstruction
 ⇒ similar efficiencies

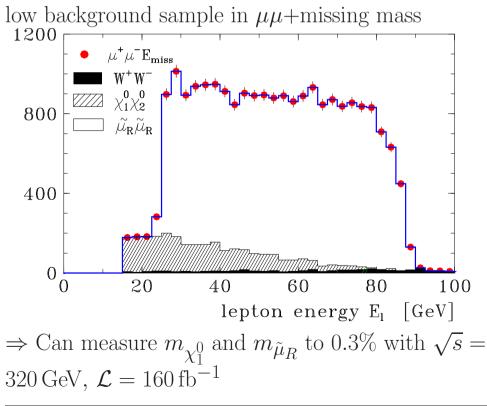
Two principle methods:

- \bullet threshold scan
- reconstruction

Threshold scan:

- gauginos: threshold suppression $\propto \beta$ \Rightarrow good precision
- sfermions: threshold suppression $\propto \beta^3$ \Rightarrow precision relatively worse
- $\tilde{e}, \tilde{\nu}_1$: mixture of β^3 from s-channel Z, γ and β from t-channel χ -exchange \rightarrow model dependent

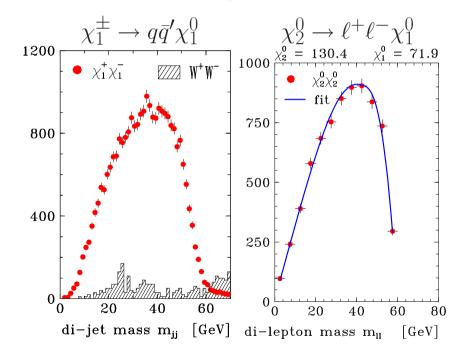
 $\underline{\text{Reconstruction:}}$


Decay of scalar particle $\tilde{\ell} \to \ell \chi$:

Flat energy distribution of ℓ between

$$\frac{E_{\ell}}{E_{\text{beam}}} = \frac{1}{2} (1 \pm \beta) \left(1 - \frac{m_{\chi}^2}{m_{\tilde{\ell}}^2} \right)$$

 $\Rightarrow m_{\chi}$ and $m_{\tilde{\ell}}$ can be obtained in a model independent way


e.g. $e^+e^- \rightarrow \tilde{\mu}_R^+ \tilde{\mu}_R^- \rightarrow \mu^+ \chi_1^0 \mu^- \chi_1^0$:

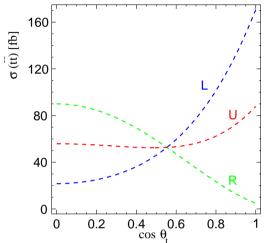
Gauginos decay in 3-prongs and have spin \Rightarrow mass determination from gaugino production not so easy

However for decay chain $\chi' \to f f' \chi \ m(ff')$ gives accurate measurement of mass difference $m_{\chi'} - m_{\chi}$

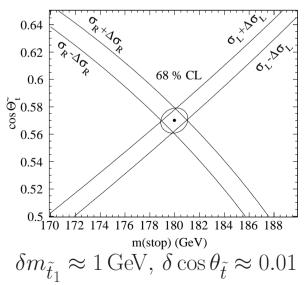
Measurements can be done with gauginos from direct production and decays


Both mass differences can be measured to $50\,\mathrm{MeV}$

Study of stop production


- due to mixing effects \tilde{t}_1 can be very light $(\tilde{t}_2$ then very heavy)
- \tilde{t}_1 decays into $\chi_1^+ b$ if kinematically allowed, otherwise into $\chi_1^0 c$

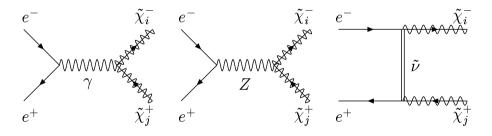
Analysis with 180 GeV $\tilde{t}_1 \rightarrow \chi_1^0 c$:


- iterative discriminant analysis using event shapes and jet energies
- \bullet 10 20% efficiency with \sim 90% purity can be achieved

- cross section depends on \tilde{t}_1 mass and $\tilde{t}_L \tilde{t}_R$ mixing angle
- dependence different for different beam polarization

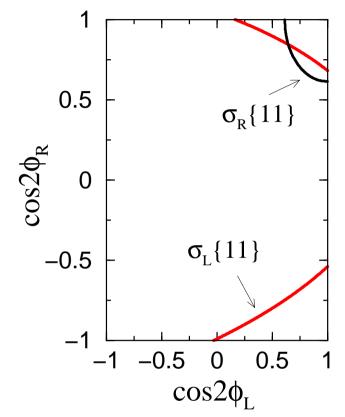
Can be used to measure mass and mixing angle:

Analyzes of charginos and neutralinos


Chargino mass matrix is given by

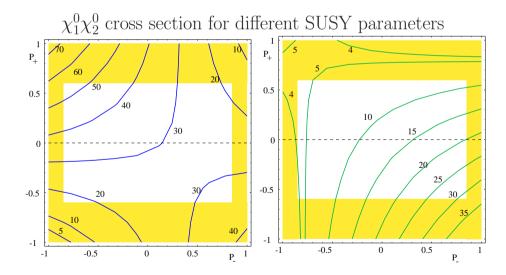
$$\mathcal{M}_{\chi} = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos\beta \\ \sqrt{2}m_W \sin\beta & \mu \end{pmatrix}$$

Matrix not symmetric \Rightarrow need two mixing angles $\Phi_{L,R}$ for left- and right-handed states

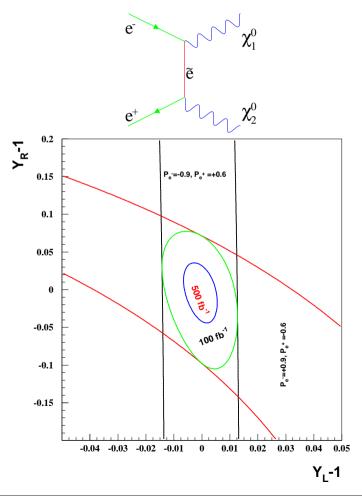

Mixing angles and and chargino masses are (complicated) functions of M_2 , μ and $\tan\beta$

Chargino production via $\mathbf{Z},\!\gamma$ s-channel and $\tilde{\nu}_e$ t-channel exchange

Need to know sneutrino mass to calculate cross section


Cross sections of $\mathcal{O}(100\,\mathrm{fb}) \Rightarrow \mathrm{expect} \ \mathrm{several} \times 10^4$ events per channel Even if only $\chi_1^+\chi_1^-$ channel is accessible (and $m_{\tilde{\nu}}$ known) can reconstruct mixing angles from polarized cross section

 $\Rightarrow M_2, \mu$ and $\tan \beta$ can be determined from $m_{\chi_1^{\pm}}$ and $\chi_1^+\chi_1^-$ polarized cross sections


$\underline{Neutralino\ production}$

- \bullet situation more complicated
 - -4×4 mixing matrix
 - $-\,\chi_1^0\chi_1^0$ channel not accessible if R-parity conserved
- \bullet access to M_1
- since t-channel exchange of \tilde{e}_L and \tilde{e}_R compete with s-channel, positron polarization gives really independent information

To prove that the new particles are really SUSY it has to be shown that the couplings amongst the superpartners are the same as for corresponding SM particles

This can be done on the percent level e.g. with $\chi_1^0 \chi_2^0$ pair production once M_1 , M_2 , μ are known from the gaugino masses and chargino cross sections

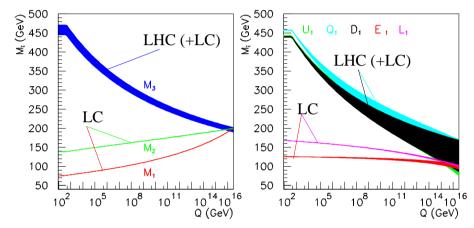
Reconstruction of SUSY parameters

- measure masses and cross sections of SUSY particles and Higgses
- fit SUSY parameters at the weak scale
- \bullet extrapolate to GUT scale using RGEs
- bottom up approach that needs no model assumptions
- get model independent prediction at high scales
- example: SUGRA with $\tan \beta = 3$, $m_0 = 100$ GeV, $m_{1/2} = 200$ GeV, $A_0 = 0$ GeV, $\operatorname{sign}(\mu) = -$ (excluded now by LEP, but general features should not change)

Accessible particles and mass error for the simulated point

Particle	Mass (GeV)	$\operatorname{Error}(\operatorname{GeV})$
\tilde{e}_L	173.0	0.18
${ ilde e}_R, { ilde \mu}_R$	131.6	0.09
$\tilde{ u}_e$	157.5	0.07
$ ilde{\mu}_L$	173.0	0.3
$\widetilde{ u}_{\mu}$	157.5	0.2
$\tilde{ au}_1$	130.8	0.6
$ ilde{ au}_2$	173.5	0.6
$\frac{\tilde{\nu}_{\tau}}{\chi_{1}^{0}}$	157.5	0.6
χ_1^0	76.6	0.05
χ_2^0	142.8	0.07
χ_3^0	343.8	0.3
χ_4^0	349.9	0.6
χ_1^{\pm}	142.9	0.035
$\begin{array}{c} \chi^{0}_{2} \\ \chi^{0}_{3} \\ \chi^{0}_{4} \\ \chi^{\pm}_{1} \\ \chi^{\pm}_{2} \\ h^{0} \end{array}$	352.6	0.25
	97.7	0.05
H^0	466.7	1.5
A^0	466.7	1.5
H^+	473.3	1.5
\tilde{t}_1	353.9	0.6
\widetilde{q}	~ 450	1.0
\tilde{g} (LHC)	486.5	10.0

Process	$\sigma(e_L^- e_R^+)(fb)$	Error (fb)	$\sigma(e_R^- e_L^+)$ (fb)	Error (fb)
$\tilde{t}_1\tilde{t}_1$	16.7	0.41	21.1	0.46
$\tilde{t}_1 \tilde{t}_2$	4.55	0.21	3.41	0.18
$\tilde{t}_2 \tilde{t}_2$	3.80	0.19	0.64	0.08
${ ilde b_1}{ ilde b_1}$	18.6	0.43	1.42	0.12
${ ilde b_1}{ ilde b_2}$	0.21	0.05	0.16	0.04
$\widetilde{b}_2\widetilde{b}_2$	0.69	0.08	2.28	0.15
$\tilde{ au}_1 \tilde{ au}_1$	18.9	0.43	66.37	0.81
$\tilde{ au}_1 \tilde{ au}_2$	0.67	0.08	0.50	0.07
$ ilde{ au}_2 ilde{ au}_2$	77.64	0.88	19.13	0.44
$\tilde{\nu}_{\tau}\tilde{\nu}_{\tau}$	20.0	0.45	15.0	0.39
H^+H^-	2.10	0.15	9.73	0.31
A^0h^0	1.22	0.11	0.91	0.10
A^0H^0	0.52	0.07	0.39	0.06
Z^0h^0	2.41	0.16	1.81	0.13
Z^0H^0	2.14	0.15	1.60	0.13

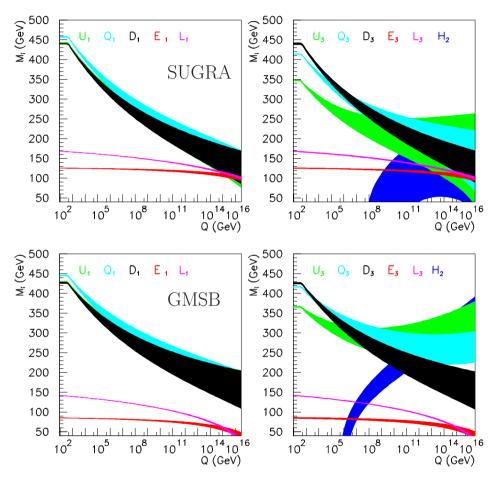

Used cross sections and errors

μ	aneta	$\mathrm{m}^2(Q_{3L})$	$m^2(t_R)$	$\mathrm{m}^2(b_R)$	$\mathrm{m}^2(au_L)$	${ m m}^2(au_R)$	$\mathrm{m}^2(q_L)$	$\mathrm{m}^2(u_R)$	$\mathrm{m}^2(d_R)$	$m^2(e_L)$	$\mathrm{m}^2(e_R)$	$\mathrm{m}^2(H_2)$	$\mathrm{m}^2(H_1)$	A_t	A_b	$A_{ au}$	M_3	M_2	M_1	Parameter
335.7	3.0	171 616	120 582	193 547	28 120	15 745	209 047	$195 \ 779$	193 876	28 140	15 785	-100 750	27 646	-358.7	-586.5	-128.7	467.55	138.65	74.64	True Value
1.3	0.01	513	657	806	139	156	457	624	624	19	17	146	601	2.5	41	43	12.1	0.10	0.15	Fit Error

Reconstructed parameters at the weak scale

Extrapolation to the GUT scale

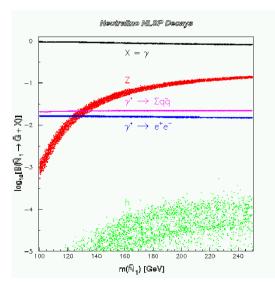
- calculate low energy parameters (gaugino masses, sfermion masses, trilinear couplings) and extrapolate to GUT scale using RGEs
- \bullet check for unification at GUT scale

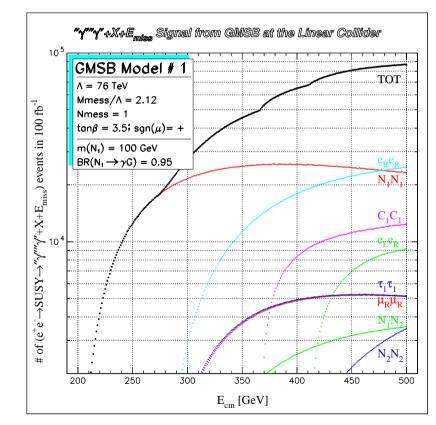


Need very small errors at weak scale to get useful results!

The fit is pure bottom up, no a priory assumptions at higher scales

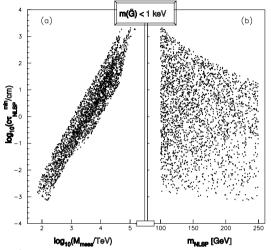
The current fit assumes that all masses are measured, however some useful information (cross sections, forward backward asymmetries) is not used The results at the GUT scale can then be used to test models

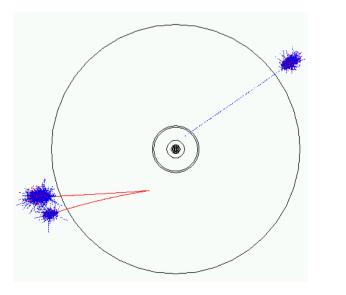

E.g. comparison of SUSY and GMSB $\,$


Models can be clearly distinguished

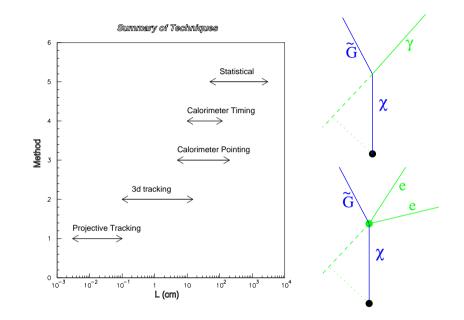
Analyzes in GMSB

- \tilde{G} is very light $(m_{\tilde{G}} \simeq \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^2 2.37 \text{eV}) \Rightarrow$
 - $-\operatorname{all}$ other SUSY particles are unstable
 - $-\operatorname{no}$ reason for NLSP to be neutral
 - $(\sqrt{F}:$ fundamental scale of symmetry breaking $F > \Lambda M_{\text{mess}})$
- NLSP normally χ_1^0 or $\tilde{\ell}$ ($\tilde{\tau}_1$ in case of significant mixing)
- depending on SUSY breaking scale NLSP can decay between prompt and outside the detector
- interesting decays: $\chi_1^0 \to \tilde{G}\gamma(\gamma^*, Z)$ or (and) $\tilde{\ell} \to \tilde{G}\ell$


- typical mass spectrum for LC-relevant GMSB-models ($\propto \Lambda$)
 - $\begin{aligned} &-\tilde{\ell}_R, \tilde{\tau}_1, \chi_1^0 \sim 100 200 \,\text{GeV} \\ &-\tilde{\ell}_L, \tilde{\tau}_2, \chi_2^0, \chi_1^{\pm} \sim 200 500 \,\text{GeV} \\ &-\text{other SUSY-particles} > 500 \,\text{GeV} \end{aligned}$
- Typical cross sections:


Expect several 10000 events

Detailed analysis for χ_1^0 -NLSP scenario exists • χ_1^0 -mass can be well measured with threshold scan


• χ_1^0 -lifetime closely correlated to M_{MESP}

Experimental signatures: non-pointing photons and e^+e^- -pairs starting in the detector

Measurement of χ_1^0 lifetime with tracking, calorimeter pointing, calorimeter timing and statistical methods (ratio between two and one photon events)

 $c au_{\chi_1^0}$ can be measured from $\mathcal{O}(10\mu\mathrm{m})$ up to more then 100m corresponding to $M_{\mathrm{mess}} \sim 100-10^5 \,\mathrm{GeV}$ Including mass measurements all model parameters can be measured to the 1% level

Roadmap to SUSY

• Discover SUSY:

 $\begin{array}{l} -\operatorname{LHC:} \ \tilde{q}, \ \tilde{g}, \ (\tilde{\ell}, \ \tilde{\nu}, \ \chi?) \\ -\operatorname{LC:} \ \tilde{\ell}, \ \tilde{\nu}, \ \chi \end{array}$

- Prove that coupling(particle)=coupling(partner)
 → LC
- reconstruct SUSY breaking scheme from accurate measurements of masses and couplings
 → LHC+LC
- If SUSY is realized in nature need LHC+LC to understand it

- Contact interactions
- \bullet Models with $Z'\!\mathrm{s}$
- \bullet Extra dimensions
- \bullet Conclusions

Contact Interactions

Very heavy exchange-particle: Propagator $\propto \frac{1}{M^2}$ Effective Lagrangian:

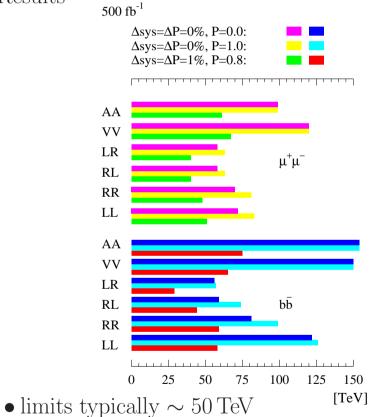
$$\mathcal{L}_{eff} = \sum_{i,k=L,R} \lambda_{ik}^2 / M^2 \alpha^{ik} (\bar{e}_i \gamma^\mu e_i) (\bar{f}_k \gamma^\mu f_k)$$

with $\alpha^{ik} = \pm 1$

Scale-parameter $\Lambda^2 = \frac{4\pi M^2}{\lambda^2}$

(e.g.
$$\mu \operatorname{decay} \Lambda = \left(\sqrt{2}G_{\mu}\right)^{-1/2} \sim 250 \operatorname{GeV}$$
)

$$\frac{d\sigma}{d\sigma} = SM(s,t) + C_{0}(s,t)\frac{1}{t} + C_{4}(s,t)\frac{1}{t}$$


$$\frac{a\sigma}{d\cos\theta} = SM(s,t) + C_2(s,t)\frac{1}{\Lambda^2} + C_4(s,t)\frac{1}{\Lambda^4}$$

(Equivalent to t-channel exchange of a heavy scalar with mass M and coupling $\lambda)$

Main sensitivity is in interference term, so large dependence on helicity structure Assumptions

- $\sqrt{s} = 500 \,\mathrm{GeV}, \,\mathcal{L} = 500 \,\mathrm{fb}^{-1}$
- b-tagging efficiency $\varepsilon_{\rm b} = 60\%$
- systematic error 0, 1% (pessimistic)

Results

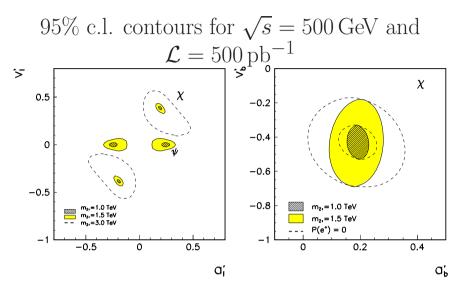

- systematics will dominate, otherwise $\Lambda_{\text{lim}} \propto \mathcal{L}^{1/4}$
- \bullet polarization helps little
- LHC reach similar but in different channels

Models with Z's

- models with extended gauge groups (left-right-symmetric, E_6) normally require additional Z-bosons
- in principle Z and Z' mix, however Z Z' mixing angle tightly constrained by Z-precision data
- \bullet for direct production LHC reaches much higher Z'-limits than LC ($\sim 3\,\text{TeV})$
- however for ff-production Z'-exchange interferes with Z and γ exchange so that Z'-effects remain visible for $m_{Z'} \gg \sqrt{s}$

(in the same way PEP and PETRA could measure properties of the Z)

- measurement of cross sections and asymmetries gives access to vector- and axial-vector-couplings separately
- model dependent analyzes:
 - $-\operatorname{assume}$ a given model
 - \implies all couplings are defined
 - $-\operatorname{can}$ use leptonic and hadronic events
 - deviations from SM prediction translate directly into $Z^\prime\text{-mass}$


- (very moderate Luminosity assumptions for LC, however statistical scaling only with $\mathcal{L}^{1/4}$ and large contributions from Luminosity systematics)
- on average limits comparable to LHC
- however much larger difference between models, since sensitivity is in interference term
- \bullet on the contrary LC is not sensitive to the total width of the Z'

- model independent analyzes:
 - $-\operatorname{LC}$ sensitive to normalized couplings

$$a_f^N = a_f' \sqrt{\frac{s}{m_{Z'}^2 - s}}$$
$$v_f^N = v_f' \sqrt{\frac{s}{m_{Z'}^2 - s}}$$

- for leptons can obtain model independent limits/measurements on normalized couplings
- all hadronic observables depend on product of leptonic couplings (Z'-production) and hadronic couplings (Z'-decay)
- ➡ can measure hadronic couplings only if leptonic couplings deviate significantly from zero
- experimental assumptions:
 - beam polarizations 90/60% with $\Delta \mathcal{P}/\mathcal{P} = 1\%$
 - $-\operatorname{luminosity}$ known to 0.5%
 - leptons can be tagged with $\varepsilon = 95 \pm 0.5\%$
 - b quarks can be tagged with $\varepsilon = 60 \pm 0.6\%$
 - measure cross sections, A_{LR} and A_{FB}^{ℓ}

Ideal case: LHC discovers a Z', so mass is known and LC can measure the couplings

- \bullet measure leptonic couplings to few % and b-couplings to $\sim 10\%$ for $m_{Z'}=1.5\,{\rm TeV}$
- \bullet limits should roughly stay constant for $m_{Z'}/\sqrt{s}={\rm const}$
- the LC can distinguish the models over basically the full LHC discovery range

Large extra dimensions

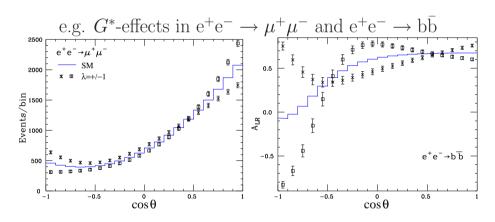
Hierarchy-problem:

Why is $m_{\rm H} \sim 100 \,\text{GeV} \ll M_{\rm pl} \sim 10^{19} \,\text{GeV}$?

Possible answers:

- SUSY (already seen)
- in reality is $M_{\rm pl} \sim 100 \,\text{GeV}$ but it appears so large because gravity lives in 4 + n dimensions

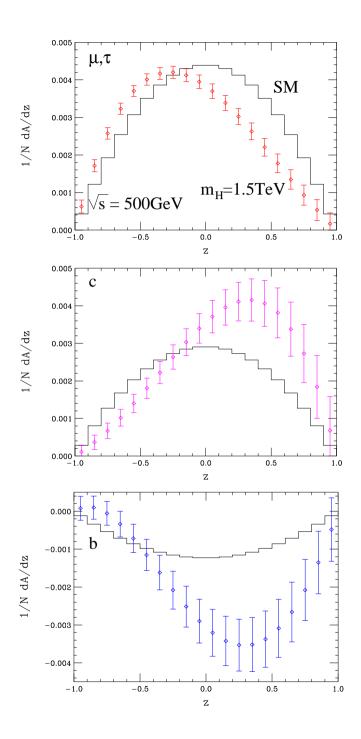
 $\mathrm{M}_{pl}^2 = \mathrm{M}_D^{2+n} \mathrm{R}^n$


 ${\cal R}$: compactification radius of extra dimensions

$$\Rightarrow R = M_{\rm pl}^{\frac{2}{\rm n}} M_{\rm D}^{-(\frac{2}{\rm n}+1)} \\ \sim 10^{\frac{30}{n}-17} \left(\frac{1\,{\rm TeV}}{M_{\rm D}}\right)^{1+\frac{2}{n}} [{\rm cm}]$$

$$n = 1 \qquad R = \mathcal{O}(10^{13} \text{cm}) \quad \text{excluded} \\ n = 2 \qquad R = \mathcal{O}(1 \text{mm}) \quad \sim \text{excluded} \\ n = 7 \qquad R = \mathcal{O}(1 \text{fm})$$

Experimental signatures:


- In the bulk of the extra dimensions there live a huge number of graviton states (Kaluza-Klein towers G^*)
- Expect effects in single γ production (e⁺e⁻ $\rightarrow \gamma G^*$, G^* invisible) and fermion pair production (e⁺e⁻ $\rightarrow G^* \rightarrow f\bar{f}$)

- \bullet LC limit $M_D < 4(7)\, \mbox{TeV}$ for $\sqrt{s} = 0.5(1)\, \mbox{TeV}$
- \bullet LHC comparable
- $\cos \theta(=z)$ dependence very different from Z'

Additional possibility: transverse polarization

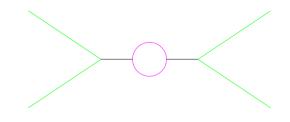
- with transverse beam polarization there exists an azimuthal asymmetry depending on $\cos \theta \rightarrow \text{plot}$
- this asymmetry is symmetric in $\cos \theta$ for vector or scalar particle exchange
- for tensor exchange (gravitons) it receives an asymmetric component
- \twoheadrightarrow Graviton and Z' exchange can be distinguished up to $M < 10 \sqrt{s}$
- extra dimensions can be excluded up to $M_D < 10(22)$ TeV for $\sqrt{s} = 0.5(1)$ TeV (highest reach at next generation colliders)

Conclusions on alternatives

- The LC is sensitive to a "General new physics scale" of order 50 TeV
- In concrete models (Z', extra dimensions) this translates into mass scales of few TeV
- LC and LHC have similar reach but are highly complementary
 - The LC is mainly sensitive to $e^+e^-\ell^+\ell^-$ and $e^+e^-b\bar{b}$ couplings while LHC is sensitive to $\ell^+\ell^-q\bar{q}$ (q=u,d)
 - LHC mainly sees the pure new physics while
 LC sees its interference with the SM
 - The LHC can discover that there is "something new" by seeing a resonance, then the LC can distinguish models by measuring the couplings

3 Precision measurements at lower energies

- Introduction
- Measurements of electroweak quantities on the Z
- Measurement of $m_{\rm W}$
- \bullet Theoretical aspects
- \bullet Study of CP-violation in the B-sector


Introduction

Interest in precision measurements

Test consistency of the theory on the loop level

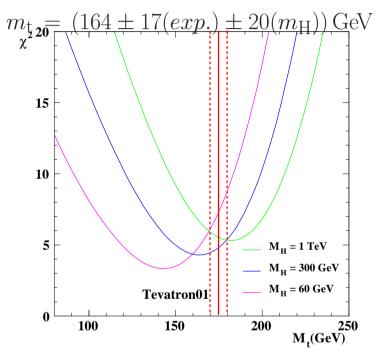
Two types of loop corrections:

• universal corrections to propagator

parameters:

- $-\Delta \rho$: absolute normalization of Z couplings
- $-\,\Delta\kappa~(\sin^2\theta^l_{e\!f\!f})\!\!:$ effective weak mixing angle in Z-fermion couplings
- $-\Delta r$: Relation $G_{\mu} \leftrightarrow m_{\mathrm{W}}$
- vertex corrections (only interesting fir b-quarks as partner of top)

Contributions to loop corrections


- corrections from isospin mass splitting ($\propto m_{\rm t}^2$ in SM)
- corrections from Higgs sector $(\propto \log(m_{\rm H}) \text{ in SM})$

Contributions to vertex corrections for b-quarks

- corrections from b-t mass splitting $(\propto m_{\rm t}^2)$
- corrections from charged Higgs sector and its SUSY partners, if exists
- corrections from special role of top-quark e.g. in technicolor models

Aim: see effects of new physics in precision data Historical example: Top mass prediction (1993)

Fit to all electroweak precision data gave

In 1995 the top-quark was discovered at the TEVA-TRON with $m_{\rm t}\sim 175\,{\rm GeV}$

Hope at least to repeat this with the Higgs Boson

LEP+SLD+TEVATRON measure electroweak observables on the permille level

Quantities:

- Z-lineshape: Partial widths of $\mathbf{Z} \to \mathbf{f}\overline{\mathbf{f}}, \, \Delta\rho, \, N_{\nu}$
- Asymmetries: Weak mixing angle in Z-decays, $\sin^2 \theta_{\text{eff}}^{\ell}$
- b-quark partial width and asymmetries (R_b, \mathcal{A}_b) Mass dependent vertex corrections
- W-mass: Δr

Present situation:

- LEP: $\sim 4 \times 4 \cdot 10^6$ Zs with unpolarized beams $\sim 4 \times 500 \,\mathrm{pb}^{-1}$ above the W-threshold
- SLD: ~ $5.5 \cdot 10^5$ Zs with $\mathcal{P} \sim 75\%$ electron polarization

Assumptions

- The linear collider can produce ~ 10⁹ Zs on resonance (corresponds to ~ 30 fb⁻¹ or 50 days)
 L = 7 · 10³³ cm⁻²s⁻¹ ⇒ 230 Hz of Z → qq̄
- similar luminosity is possible near the W-threshold
- electrons and positrons can be polarized with $\mathcal{P}_{e^-} = \pm 80\%, \ \mathcal{P}_{e^+} = \pm 60\%$ (corresponds to an effective polarization of $\frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}} \sim 95\%$)
- positive and negative polarizations can be switched randomly from bunch to bunch (or train to train) independent for electrons and positrons
- polarimeters are available for relative measurements

Lineshape parameters

Cross section around Z-peak:

$$\sigma_f(s) = \frac{12\pi}{m_Z} \frac{\Gamma_e \Gamma_f s}{\left(s - m_Z^2\right)^2 + \left(\frac{s}{m_Z}\right)^2 \Gamma_Z^2} + \sigma_{\text{int}} + \sigma_{\gamma} + \text{rad. corr.}$$

$$\Gamma_{\ell} \approx (1 + \Delta_{\rho}) \Gamma_{\ell}^{(B)}$$

$$\Gamma_{\text{had}} = (1 + \alpha_s / \pi + ...) \Gamma_{\text{had}}^{(0)}$$

Minimally correlated observables:

	LEP precision
$m_{ m Z}$	$0.2 \cdot 10^{-4}$
$\Gamma_{\rm Z}$	$0.9 \cdot 10^{-3}$
$\sigma_0^{\text{had}} = \frac{12\pi}{m_Z^2} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$	$0.9 \cdot 10^{-3}$
$R_{\ell} = \frac{\Gamma_{\rm had}}{\Gamma_l}$	$1.2 \cdot 10^{-3}$

 \Rightarrow Need to scan

 \Rightarrow Need absolute cross sections

Assumptions:

- relative beam energy error around Z-pole: 10^{-5} $\Rightarrow \Delta \Gamma_Z / \Gamma_Z = 0.4 \cdot 10^{-3}$ (Currently under debate if $\Delta E_b = 10^{-5}$ is pos-
- sible and if beamstrahlung and beamspread are enough under control)
- selection efficiency for μ s, τ s, hadrons (and exp error on \mathcal{L}) improved by a factor three relative to the best LEP experiment $\Rightarrow \Delta R_{\ell}/R_{\ell} = 0.3 \cdot 10^{-3}$
- theoretical error on luminosity stays at 0.05% $\Rightarrow \Delta \sigma_0^{\text{had}} / \sigma_0^{\text{had}} = 0.6 \cdot 10^{-3}$ (again if beamspread/-strahlung understood)

Improvement on lineshape related quantities:

	LEP	Giga-Z
$m_{ m Z}$	$91.1874 \pm 0.0021 \text{GeV}$	$\pm 0.0021\mathrm{GeV}$
$lpha_s(m_{ m Z}^2)$	0.1183 ± 0.0027	± 0.0009
$\Delta \rho$	$(0.55 \pm 0.10) \cdot 10^{-2}$	$\pm 0.05 \cdot 10^{-2}$
N_{ν}	2.984 ± 0.008	± 0.004

scale DELPHI analysis:

 $R_b = 0.21634 \pm 0.00075 (stat \, dat + MC) \\ \pm 0.00028 (uds - bg) \\ \pm 0.00030 (c - bg) \\ \pm 0.00027 (hem \, corr)$

DELPHI working point: $\varepsilon_b \approx 30\%$ purity $\approx 98\%$ Possible for TESLA: $\varepsilon_b \approx 40\%$ purity $\approx 99.5\%$

- statistical error down by a factor 20
- c-background down by a factor 4
- uds-background mainly from gluon splitting to $b\bar{b}$ can be measured much better with TESLA
- \bullet hemisphere correlation is mainly QCD
 - $-\det$ resolution factor 10 better than LEP
 - losses are mainly due to mass cut (Lorenz invariant)
 - $-\,{\rm energy}$ dependence should be much smaller
 - $-\operatorname{also}$ this source should decrease by a factor 4-5
- $\Delta R_b = 0.00014$ should be possible (factor 5 to LEP)

$A_{\rm LR}$

Definition

$$\sigma = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$$

with \mathcal{P}_{e^+} (\mathcal{P}_{e^-}) longitudinal polarizations of the positrons (electrons)

 $A_{\rm LR}$ measures weak mixing angle $\sin^2 \theta_{\rm eff}^{\ell}$:

$$A_{\text{LR}} = \mathcal{A}_{\ell}$$
$$\mathcal{A}_{\ell} = \frac{2g_{Vl}g_{Al}}{g_{Vl}^2 + g_{Al}^2}$$
$$\frac{g_{Vl}}{g_{Al}} = 1 - 4|Q_l|\sin^2\theta_{\text{eff}}^\ell$$

- $\sin^2 \theta_{\text{eff}}^{\ell}$ is a very sensitive variable to see loop corrections to the Z-couplings.
- $A_{\rm LR}$ is the variable most sensitive to $\sin^2 \theta_{\rm eff}^{\ell}$

The (extended) Blondel scheme

Four independent measurements:

(4 combinations with positive/negative electron/ positron polarization)

 $\begin{aligned} \sigma_{++} &= \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right] \\ \sigma_{-+} &= \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (- \mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right] \\ \sigma_{+-} &= \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (\mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right] \\ \sigma_{--} &= \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{\mathrm{LR}} (- \mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right] \\ \implies A_{\mathrm{LR}} \text{ can be measured without knowing} \\ \mathcal{P}_{e^+}, \mathcal{P}_{e^-} &: \\ A_{\mathrm{LR}} &= \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{-+} - \sigma_{--})}}} \end{aligned}$

About 10% of the statistics is needed on the small cross sections

Only difference between $|\mathcal{P}_{e^{\pm}}^{+}|$ and $|\mathcal{P}_{e^{\pm}}^{-}|$ needs to be known from polarimetry

Can be brought under control with polarimeters a la SLD

Polarization difference $(\Delta \mathcal{P}_{e^{\pm}} = |\mathcal{P}_{e^{\pm}}^+| - |\mathcal{P}_{e^{\pm}}^-|)$:

- Need SLD like polarimeter
- Asymmetry in one polarimeter channel: $A_i = a_i \mathcal{P}_e \mathcal{P}_\gamma \ (a_i = \text{analyzing power})$
- Laser polarization can be switched pulse to pulse
- Allow for different laser currents dependent on the polarization
- Need two polarimeter channels with different analyzing power
- combined fit of Z-rates and polarimeter rates can get $\Delta \mathcal{P}_{e^{\pm}}$ and a_i as well
- However need polarimeter counting rates about 10 times the Z rate (ok for SLD)

$$\Delta A_{\rm LR} = 4 \cdot 10^{-5} \cdot \sqrt{\frac{10^9}{N_Z}}$$

Systematic uncertainties

- Beam energy: $\Delta A_{\rm LR} / \Delta \sqrt{s} \approx 2 \cdot 10^{-2} / {\rm GeV}$ \Rightarrow need $\Delta \sqrt{s} \approx 1 {\rm MeV}$ relative to $m_{\rm Z}$
- Luminosity difference: Only relative precision needed.

Should be no problem if luminometer inside the mask is possible

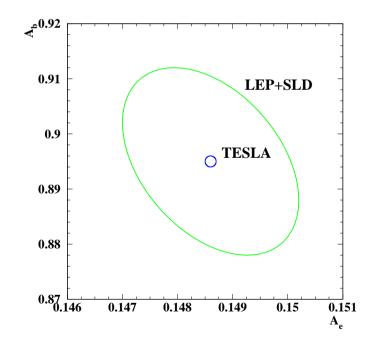
- Backgrounds: To be kept below 10⁻⁴ According to LEP experience no problem
- Beamstrahlung: $\Delta A_{\rm LR} = 9 \cdot 10^{-4}$ Needs to be known on the few percent level (partially covered by Z-scan)

Assume $\Delta A_{\rm LR} = 10^{-4} \Rightarrow \Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.000013$

\mathcal{A}_{b}

Without polarized beams (LEP) the forwardbackward asymmetries can be measured:

$$A_{FB}^{q} = \frac{\sigma_{F}^{(q)} - \sigma_{B}^{(q)}}{\sigma_{T}^{(q)}}$$
$$= \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{q}$$

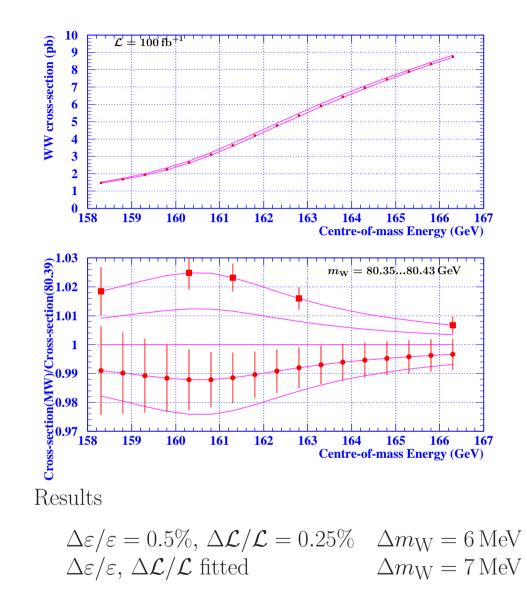

With polarized beams (SLD,TESLA) the left-right-forward-backward asymmetries can be measured:

$$A_{FB,LR}^{q} = \frac{\sigma_{L,F}^{(q)} - \sigma_{L,B}^{(q)} - \sigma_{R,F}^{(q)} + \sigma_{R,B}^{(q)}}{\sigma_{L}^{(q)} + \sigma_{R}^{(q)}}$$
$$= \frac{3}{4} \mathcal{P} \mathcal{A}_{q}$$

Statistically factor $\mathcal{P}/\mathcal{A}_{e} \sim 6$ more sensitive to \mathcal{A}_{b} However most systematics scale with the asymmetry Two main techniques: leptons and jetcharge

- Statistical error $\Delta \mathcal{A}_b \approx 4 \cdot 10^{-4}$ in both cases
- Light quark systematics can be reduced by a (harder) lifetime tag
- For jetcharge reduce hemisphere correlations by a thrust cut
- leptons will be dominated by $B\overline{B}$ -mixing (statistical error!)
- A total error of $\Delta A_{\rm b} = 1 \cdot 10^{-3}$ seems realistic

Similar improvement as for \mathcal{A}_{e}


$m_{ m W}$

Best possible method: threshold scan

- \bullet spend 100 fb⁻¹ at $\sqrt{s} \sim 161\,{\rm GeV}~(1~{\rm year!})$
- polarization is very useful to enhance cross section or measure background

$$\begin{split} \sigma_{\rm WW} &= 3\sigma_{\rm WW}^{\rm unpol} \qquad \mathcal{P}_{e^-} = -0.8, \ \mathcal{P}_{e^+} = 0.6 \\ \sigma_{\rm WW} &= 0.1 \sigma_{\rm WW}^{\rm unpol} \qquad \mathcal{P}_{e^-} = 0.8, \ \mathcal{P}_{e^+} = -0.6 \end{split}$$

- assume efficiency/background as at LEP
- \bullet perform 5-point scan
- assume point to point systematics negligible
- beam energy is known to well below 5 MeV (A relative calibration to the Z-mass is fine)

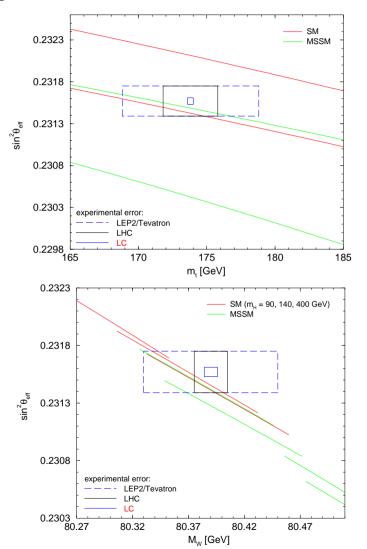
Measurement is statistics limited

Precision data and the LHC

m_{W}

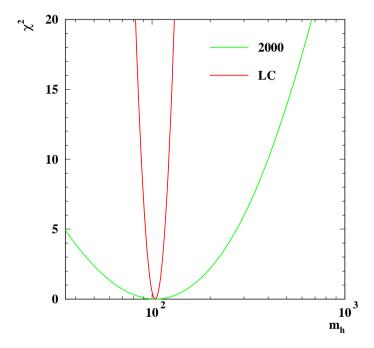
- LHC has infinite statistics for W-production
- two main sources of error:
 - $-\,{\rm energy}$ scale of the detector
 - parton distribution function
- $\Delta m_{\rm W} = 15 \,{\rm MeV}$ might be possible although extremely difficult

```
\sin^2 \theta_{e\!f\!f}^l
```


- in principle $\sin^2 \theta_{eff}^l$ can be measured from forward backward asymmetry $q\bar{q} \rightarrow \ell^+ \ell^-$ (At $\sqrt{s} = m_Z$: $A_{FB}^0 = \frac{3}{4} \mathcal{A}_i \mathcal{A}_f$)
- select events with $m(\ell^+\ell^- \approx m_Z \text{ and large boost})$
- the high energy quark is then on average a valence quark, the low energy one a (sea) antiquark
- possible statistical precision $\Delta \sin^2 \theta_{eff}^l = 0.0001$
- unclear if systematics can be brought to this level

Interpretation of precision measurements

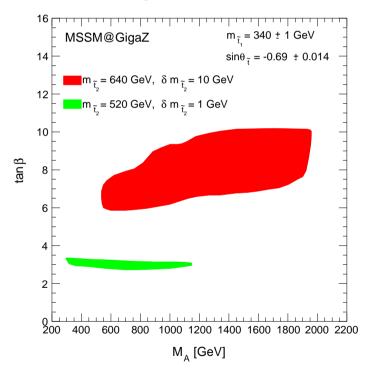
Parametric errors


- largest effect: Running of α $(\alpha(m_{\rm Z}) = \alpha(0) \frac{1}{1 - \Delta \alpha})$
 - -Using data only (without the latest BES results) ($\delta(\Delta \alpha) = 0.00065$): $\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.00023, \ \Delta m_{\text{W}} = 12 \text{ MeV}$
 - $-\sim$ factor three improvement using perturbative QCD at low energy
 - with $\sigma(e^+e^- \rightarrow had)$ below the Υ to 1% ($\delta(\Delta \alpha) = 0.000046$): $\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.000017, \Delta m_{\text{W}} < 1 \text{ MeV}$
- 2 MeV error on m_Z gives $\Delta \sin^2 \theta_{\text{eff}}^{\ell} = 0.000014, \ \Delta m_W = 1 \text{ MeV}$ (if W-mass calibrated to m_Z)
- $\Delta m_{\rm t} = 1 \,{\rm GeV}$ gives $\Delta \sin^2 \theta_{\rm eff}^{\ell} = 0.00003, \, \Delta m_{\rm W} = 6 \,{\rm MeV}$ \Rightarrow no problem with LC precision of $m_{\rm t}$ (< 200 MeV)

SM and MSSM make accurate predictions for $\sin^2 \theta_{\rm eff}^{\ell}$ and $m_{\rm W}$

If no new physics found up to then:

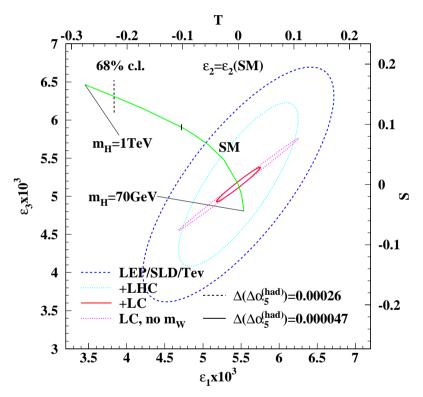
Standard Model Higgs can be predicted to 5% accuracy:



Can test the theory if a Higgs of $m_{\rm H} \sim 170 \, {\rm GeV}$ is found

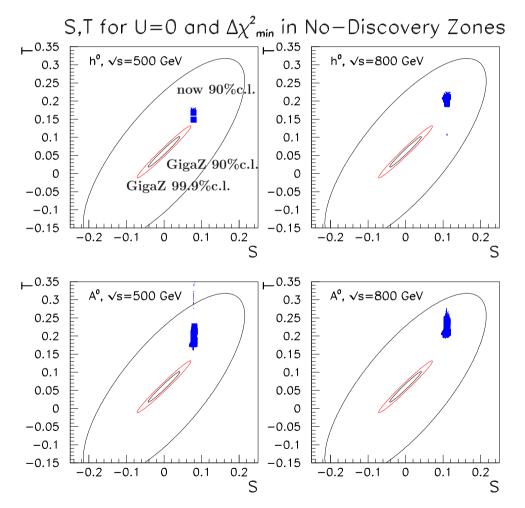
Possible scenario inside the MSSM:

- some SUSY parameters measured at LHC e.g. stop sector
- \bullet however some of the parameters still uncertain

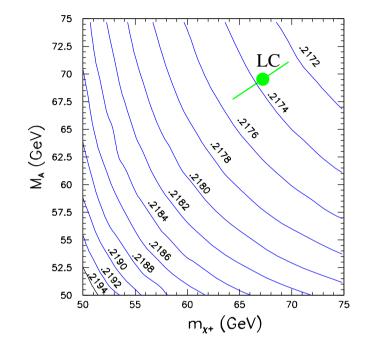

Precision measurements can constrain allowed SUSY parameter range

In this example one can get a fairly good measurement of $\tan \beta$ and some ideas on m_A

Model independent analysis (ε , ST parameters)


- ε_1 (T): absorbs large isospin splitting corrections
- ε_3 (S): only logarithmic dependencies
- ε_2 (U): additional (small) correctins to $m_{\rm W}$

- \bullet dramatic improvement in $m_{\rm H}$ direction
- \bullet improvement perpend. to $m_{\rm H}$ largely due to $m_{\rm W}$
- significant Higgs constraint independent of ε_1 (T) possible


E.g. exclusion of a two Higgs doublet model with a light Higgs

(that cannot be excluded by direct searches)

For these types of exclusions $m_{\rm W}$ is important!

 $R_{\rm b}$ is sensitive e.g. to masses within Supersymmetry

CP-violation studies

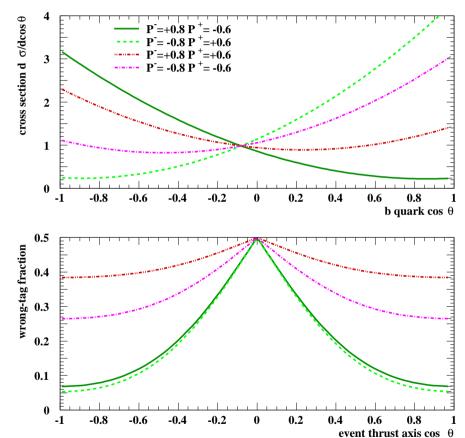
measure time dependent asymmetries

 $A(t) = \frac{N_{B^0}(t) - N_{\bar{B}^0}(t)}{N_{B^0}(t) + N_{\bar{B}^0}(t)} = a_{\cos} \cos \Delta m t + a_{\sin} \sin \Delta m t$

mainly two examined decay modes

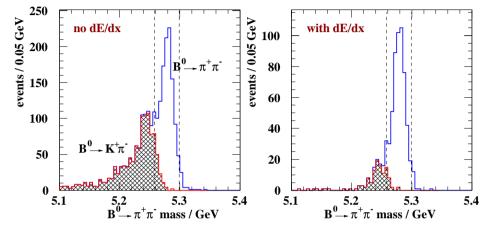
•
$$B^0 \rightarrow J/\Psi K_s^0$$
:
 $-a_{\sin} = -\sin 2\beta, \ a_{\cos} = 0$
• $B^0 \rightarrow \pi^+ \pi^-$:

- $-a_{\sin} = -\sin 2\alpha$, $a_{\cos} = 0$ if penguin diagrams can be ignored
- however a_{\sin}, a_{\cos} modified by penguin contributions, hard to calculate
- can be disentangled by measuring branching ratios $B^0 \to \pi^+ \pi^-$, $B^0 \to \pi^0 \pi^0$, $B^+ \to \pi^+ \pi^0$


Experimental analysis:

- identify initial state b-charge
- \bullet reconstruct decay mode
- measure eigentime to decay (easy in LC environment with fully reconstructed decays)

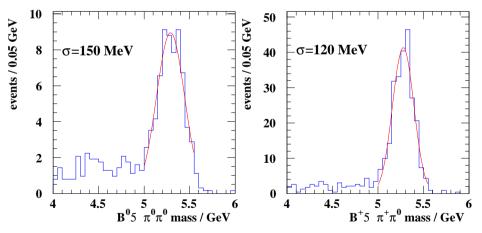
total statistics: $4\cdot 10^8$ b-hadrons


Tagging of primary b-charge:

• Polarization gives primary flavor tagging "for free"

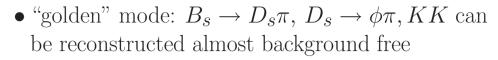
Final state identification:

• Missing particle ID can be replaced by excellent momentum resolution

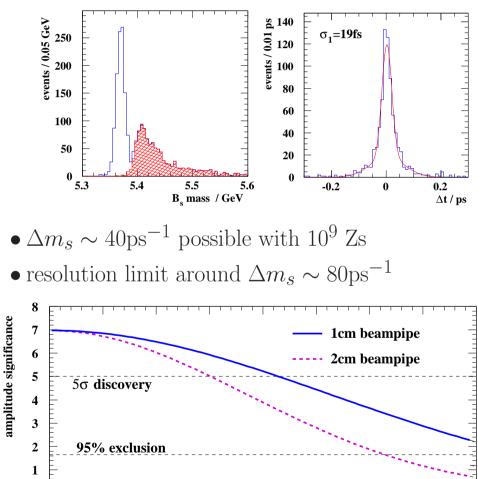

Results

	$\sin 2\beta$	"sin 2α "
BaBar	0.12	0.26
CDF	0.08	0.10
ATLAS	0.02	0.14
LHC-b	0.01	0.05
TESLA	0.04	0.07

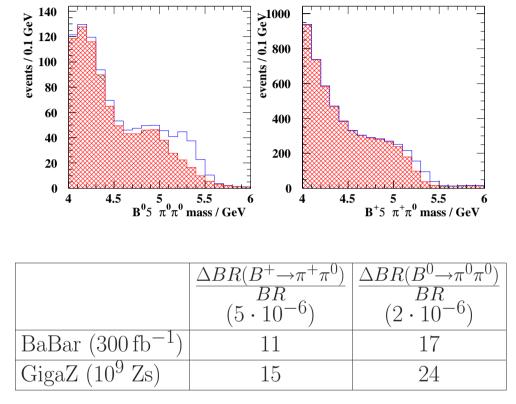
Not the best, but interesting cross check!


Branching ratios $B^0 \to \pi^0 \pi^0, B^+ \to \pi^+ \pi^0$

- needed to disentangle direct from penguin contributions in $B^0 \to \pi^+\pi^-$
- only possible in e⁺e⁻-machines
- Needs at a linear collider:
 - b-tagging opposite to signal hemisphere for $b\bar{b}$ -selection
 - anti-b-tagging in signal hemisphere to suppress other b-decays
 - good calorimeter resolution (mainly spatial) for mass measurement



(Resolution depends strongly on the calorimeter design)


$B_s \overline{B}_s$ -oscillations

Finally a signal should be seen above background

Competitive with 10^9 Zs, leading with 10^{10} Zs

0

10

20

30

40

50

60

 $\Delta m_s / ps^{-1}$

Conclusions on lower energy running

- With less than a year of running on the Z huge progress on some important electroweak precision observables can be made
- With an additional year around the W-pair threshold also a significant improvement on $m_{\rm W}$ can be obtained
- It seems that with some effort at Beijing/ Novosibirsk the running of α can be measured to a high enough precision
- Only with the precise data from TESLA the experimental measurements can match the theoretical predictions after the Higgs is found
- Some interesting cross checks in B-physics, however no "golden channel" (yet)

9 Conclusions

- A linear collider with an energy range of about 1 TeV can do a lot of precision measurements in
 - top physics,
 - $-\operatorname{Higgs}$ physics,
 - $-\operatorname{electroweak}$ gauge bosons,
 - Supersymmetry,
 - $-\operatorname{extended}$ gauge theories,
 - B-physics.
- In many respects the linear collider is complementary to the LHC and we need both to understand how electroweak symmetry breaking works.
- The motivation we have from the present experimental data is strong enough to build the LC now and not to wait for the findings of LHC.