The High-Energy Astro-Particle Physics Program at DESY: News on IceCube Plans for CTA

Stefan Schlenstedt, DESY ANL, April 23, 2008

DESY Deutsches Elektronen-Synchrotron

Cosmic Rays

Victor F. Hess, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Phys Z, 1912

Cosmic Rays

Victor F. Hess, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Phys Z, 1912 Energies and rates of the cosmic-ray particles

Highest Energy Cosmic Rays

from Active Galactic Nuclei?

5

Cosmic Gamma-Rays

Many Questions on High-Energy Extraterrestrial Particles

Where do they come from?

What is the acceleration mechanism?

What are they?

CRs and $\gamma s \otimes$ where are the neutrinos?

7

Particle Propagation

Protons/nuclei Photons Neutrinos deflected by magnetic fields absorbed by dust and radiation

Cosmic Accelerators

(candidate sites for E=100 EeV and E=1 ZeV)

large fields

large radius

Possible source of CR: SuperNovae and SN Remnant

X-ray also in radio and optical

Tycho Brahe, 1572

Possible extra-galactic source of CR: Gamma-Ray

GRB shown to be associated with SN

(e.g. GRB030329 - SN 2003dh at z=0.17)

Most powerful emissions of γ rays L_{γ} = 10^{51...53} erg/s (sun 10⁴¹ erg/y) – few/day

Possible extra-galactic sources of CR: Active Galactic Nuclei

E. Migneco

The brightest observed steady

sources: $L_v = 10^{42} \div 10^{47}$ erg/s

- Massive Black Hole $10^{6...9}$ M $_{\odot}$
- Accretion disk
- Collimated jets $\Gamma: 10$

Hubble Space Telescope Wide Field Planetary Camera 2

Neutrinos from SN 1987a

Large Cloud of Magellan small irregular galaxies – satellites of the Milky Way

Neutrinos from SN 1987a

Large Cloud of Magellan

Kamiokande (Japan) 12 events IMB (USA) 8 events Baksan (Russia) 3 events

- \rightarrow temperature in the new neutron star ${\sim}40$ Billion K
- \rightarrow neutrino mass < 23 eV

Neutrino Astro-Physics

v Astro-Particle Physics

connects astro-physics and particle physics

- light
- neutral
- interact only by weak force
- ⇒ good astrophysical probes:● travel straight
- 'not' absorbed over cosmological distances and dense environment

understand

- the origin of cosmic rays
- cosmic cataclysms
- basic properties $(\sigma, m_{\nu}, \nu_{\tau})$
- dark matter
- new kinds of objects
- tests of relativitiy, search for big bang relics, effects of ED...

v's from Cosmic Accelerators

proton (Fermi) acceleration in shock waves $\rightarrow dN/dE \sim E^{-2}$

neutrino production
Proton interactions
p → p (SNR, X-Ray Binaries)
p → γ (AGN, GRB, microQS)
decay of pions and muons

simultaneous γ production • π^0 decay

Cosmic ray acceleration yields neutrinos and gammas with similar abundance and energy spectra

Particle accelerator

Long-term Astro-Particle Physics Program

Non-thermal universe

20 years: Baikal \Rightarrow AMANDA \Rightarrow IceCube

Multi-messenger with MAGIC

Cherenkov Telescope Array CTA

Principles of v-Telescopes

<u>Earth</u> screens against all particles except neutrinos

<u>Atmosphere</u> target for production of 'background' neutrinos detector exploits Cherenkov light: spectral range 350-500 nm

Principles of v-Telescopes

<u>Earth</u> screens against all particles except neutrinos

<u>Atmosphere</u> target for production of 'background' neutrinos detector exploits Cherenkov light: spectral range 350-500 nm

Neutrino Particle ID

6 PeV

10 TeV

multi-PeV

 v_{τ}

τ±(300 m!)

 $\tau \rightarrow \nu_{\tau}$ +hadrons

ν_τ+N→τ+...

Neutrino Particle ID

19

Lake Baikal

alah 1-21 000 bio

The Baikal Detector NT-200

AMANDA

IceCube

SF. MILLION

geographic Pole

Amundsen-Scott South Pole station

7י

AMANDA

IceCube

geographic Pole

19 strings two km deep

AMANDA

Amundsen-Scott South Pole station

AMANDA

IceCube

RadarSat map of Antarctica JUDOIkm Uarsen Weddell Virson Wirson McMurar Terra Nova Ba

- IceCube

AMANDA

19 70... strings strin two km deep geographic Pole

Amundsen-Scott South Pole station

The Collaboration

University of Alaska, Anchorage University of California, Berkeley University of California, Irvine Clark-Atlanta University University of Delaware / Bartol Research Institute University of Kansas Lawrence Berkeley Natl. Laboratory University of Maryland Pennsylvania State University Southern University and A&M College University of Wisconsin, Madison University of Wisconsin, River Falls

RWTH Aachen DESY, Zeuthen Universität Dortmund MPIfK Heidelberg Humboldt Universität, Berlin Universität Mainz BUGH Wuppertal

Stockholms Universitet Uppsala Universitet

Vrije Universiteit Brussel Université Libre de Bruxelles Universiteit Gent Université de Mons-Hainaut

Chiba University

University of Canterbury, Christchurch

Universiteit Utrecht

$\frac{1}{2}$ km³

IceTop

IceCube Physics Program

Atmospheric neutrinos

Point source search: muon-neutrino Search for diffuse flux: electron/tau neutrino Gamma-ray bursts

Search for WIMPs

Supernova search

Exotics: monopoles etc

Cosmic rays: energy spectrum and composition
Atmospheric Muons and Neutrinos

Atmospheric Neutrinos

Test beam of neutrinos is also the background to the extraterrestrial signal

Measurements of an Diffuse Extraterrestrial v Flux

Several models of AGN neutrino emission are ruled out by current measurements → precise flux measurement needs km³-size detector

Neutrinos from specific

examples (out of 32 sources) of a five year data analysis

source	nr. of v events	expected background	E^{-2} flux upper limit (90% c.l.) [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]
Markarian 421	6	7.4	7.4
M87	6	6.1	8.7
1ES 1959+650	5	4.8	13.5
SS433	4	6.1	4.8
Cygnus X-3	7	6.5	11.8 🔿
Cygnus X-1	8	7.0	13.2
Crab Nebula	10	6.7	17.8
3C 273	8	4.72	18.0

Neutrinos from specific

examples (out of 32 sources) of a five year data analysis

source	nr. of v events	expected background	E^{-2} flux upper limit (90% c.l.) [10 ⁻¹¹ TeV ⁻¹ cm ⁻² s ⁻¹]	
Markarian 421	6	7.4	7.4	
M87	6	6.1	8.7	
1ES 1959+650	5	4.8	13.5	No
SS433	4	6.1	4.8	
Cygnus X-3	7	6.5	11.8 🔿	significant
Cygnus X-1	8	7.0	13.2	excess
Crab Nebula	10	6.7	17.8	observed
3C 273	8	4.72	18.0	

Point Source Search

\rightarrow no significant excess found

calculate significance of local fluctuations from expectation of atmospheric neutrinos

- un-binned statistical analysis
- maximum of 3.4 σ compatible with background fluctuation

2006 2007 IceCube 9 strings IceCube 9 strings							
IceCube Detector	Energy Window (TeV)	Exposure Time	Limit (L) Sensitivity (S) (TeV ⁻¹ cm ⁻² s ⁻¹)				
9 string (2006)	5 - 1000	137 d	$1.2 \cdot 10^{-10} (L)$				
22 string (2007) + AMANDA	5 - 5000 0.5 - 10	240 d	~10 ⁻¹¹ (S) for specific scenarios				
80 string	5 - 5000	Зу	$2.10^{-12}(S)$				

v-Flux Predictions from γ -Ray Measurements

mean atmospheric flux (Volkova 1980)

A. Kappes et al., astro-ph 0607286

Low Signal Statistics in km³ Neutrino-Telescopes

Bkg
23
41
9.3
5.2
11
2.5

(NCP: No counterpart at other wavelengths $*no \gamma$ -ray absorption)

23 more sources investigated

A. Kappes et al., astro-ph 0607286 C Stegmann ICRC07

Enhance sensitivity for transient sources opaque sources sources at higher (PeV) energies

Many calculations and predictions on neutrinos from diffuse and pointsources from Dermer, DiStefano, Mannheim, Protheroe, Stecker, Waxman...

Find v from GRBursts

Check for coincidences with BATSE, IPN, SWIFT

Factor ~2 above predictions with AMANDA

With full IceCube test within a few month

Neutralino Search

e.g.soft channel $\chi + \bar{\chi} \rightarrow b + \bar{b}, b \rightarrow c \ \mu \ \nu$ hard channel through W

Limits on muon flux from Earth center

Muon flux from the Earth (km⁻² yr⁻¹,

Limits on muon flux from Sun

Compared to the Earth, much better complementarity due to spin-dependent capture in the Sun

Measure Very High-Energy Gammas

Measure Very High-Energy Gammas

MILAGRO

VHE γ -Ray Sources

Supernova Remnants (SNR) Pulsar Wind Nebulae (PWN) Unidentified Galactic Sources Diffuse Sources Binary systems Active Galactic Nuclei (AGN) Want to know: Nature of primary particles

Nature of primary particles
Their spatial and momentum distribution
Acceleration mechanism
Propagation characteristics

Super Nova Remants RX J1713.7-3946

Super Nova Remnants

Blazars

high variability

Blazars: exceptional Flares

- peak flux \approx 50 times average
- doubling times < 3 min

• Vacuum dispersion from quantum gravity? M_{QG1} > 2.6 x 10¹⁷ GeV

22:10

22:00

• Dynamics of acceleration?

1.2-10 TeV

(1.2-10 TeV)

July 09, 200550

22:30

22:20

Dark Matter Search

Complementarity between direct detection and indirect detection through gamma-rays

χ

þ

photon

Measurement of gamma-rays via the Cherenkov-light of air showers

The Next Generation

ten times higher sensitivity extended energy range

observatory

Cherenkov Telescope Array

An advanced facility for ground-based γ -ray astronomy

Sensitivity

Sensitivity

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

10⁻¹⁴

eV

< 8"

Sensitivity (ergs cm⁻² s⁻¹)

Crab

10% Crab

1% Crab

10⁵

Sensitivity

measure variable sources within short time scales

Number of Sources

Kifune Plot

Number of Sources

Kifune Plot

Number of Sources and

Kifune Plot

shorter timescales

Science Potential in Classes of Objects

European Initiative

H.E.S.S. + MAGIC community ++

Germany (MPI, universities and DESY), France, Spain, Italy, Switzerland, Poland...

APpEC and ASPERA, ASTRONET

Letter of Intent for a CTA consortium

Memoranda of Understanding

Japan plans to join CTA

USA initiative AGIS

Project Schedule

2008-2011: R&D and prototyping

- Layout studies, design
- Prototypes of components
- Prototypes of "standard" telescope
- 2012-2017: Construction
 - 2014: start of partial science operation

Base-line Design Criteria Stereoscopic telescope system with > 4 telescopes Alt-Az mount on rails Davies-Cotton for small dishes, parabola for large dishes Segmented mirror facets of ~1-2.5 m² size F/D > 1Lifetime > 10 years Robust, simple, reliable system, robotic operation

Safety: Human safety, protection of the instrument (Survival winds > 160 km/h), redundancy in power, drives, protection during ice, snow, low temperatures

Baseline Camera: PMTs

super-bialkali and ultra-bialkali PMTs

Alternative light sensors

APDs, SiPMs, HPDs

performance, costs, open issues...

Prototype Phase

Sensitivity and trigger studies

Array Operation Center

Drive and Control system

Array Layout Studies

2008: decide on # different telescopes, telescope size, field of view and pixel size range for each energy band, timing information

2008: provide ≥ one array layout/design that meets the project budget

2009: optimize the layout in detail with fixed parameters

Array Operation Center

Array Operation Center

Telescopes

2008: design of telescope structures (2-3 sizes) with costs and reliable prediction of performance parameters

2009: design of drive-, control- and safety system

2010-11: build a prototype of "standard" type

Drive System

Safety System

Haza

Drive and Safety System

ΜΡΙ

Motors

Feedbacks

Gears

End switches

Emergency system

R&D and prototyping: ~10 M€

Construction of an array

South ~100 M€

North ~50 M€

Astro-Physics Program

- ν -physics with IceCube
 - Construction
 - Search for point sources and non-resolved flux, GRBs, Supernovae
 - Search for WIMPs, monopoles, ...
- γ -ray physics with CTA
 - Physics Program
 - Observatory

The Gamma Ray Horizon

Hinton, ICRC 2007

Energy threshold of 100 GeV allows to detect high luminosity sources up to $z \approx 1$

Project Challenges

Agreement on array layout

Cost and funding

Reliability

Coordination

Production

Organization as observatory

Search for Neutrino Flares

Search for Neutrino Flares

Excess in time-sliding windows?

= 2.25°-3.75°

= 40/20 days for extra-galactic/ galactic objects

... out of **12** Sources: No statistical significant effect observed

Göttingen, Apr 07

S

Schlenstedt

Neutrino Astro-Particle Physics

Search for Neutrino Flares

ne-sliding wind	ows? galactic obje	cts	sliding windo	w vents time	S Schlenstedt
Nr. of v events (4 years)	Expected backgr. (4 years)	Period duration	Nr. of doublets	Probability for highest multiplicity	Neutrino Astro-
6	5.58	40 days	0	Close to 1	-Particl
5	3.71	40 days	1	0.34	e Phys
6	4.37	40 days	1	0.43	
6	5.04	40 days	1	0.52)
6	5.04	20 days	0	Close to 1)))
6	4.76	20 days	1	0.32	en An
5	5.12	20 days	0	Close to 1	r 07
	ne-sliding wind extra-galactic/ Nr. of v events (4 years) 6 5 6 6 6 6 6 6 6 6 5	ne-sliding windows?extra-galactic/ galactic objeNr. of v events (4 years)Expected backgr. (4 years)65.5853.7164.3765.0465.0464.7655.12	ne-sliding windows?extra-galactic/ galactic objectsNr. of v events (4 years)Expected backgr. (4 years)Period duration65.5840 days65.0440 days65.0440 days65.0420 days64.7620 days55.1220 days	ne-sliding windows?sliding windows?extra-galactic/galactic objects μ Nr. of ν events (4 years)Expected backgr. (4 years)Period durationNr. of doublets65.5840 days065.5840 days164.3740 days165.0440 days165.0420 days064.7620 days065.1220 days0	ne-sliding windows?sliding windowextra-galactic/ galactic objectseventsNr. of v events (4 years)Expected backgr. (4 years)Period durationNr. of doubletsProbability for highest multiplicity65.5840 days0Close to 153.7140 days10.3464.3740 days10.4365.0420 days0Close to 164.7620 days10.3255.1220 days0Close to 1

... out of **12** Sources: No statistical significant effect observed

Neutrinos and 1ES1959

A posteriori search: three events in 66 days in a period of major outburst – "the orphan flare" (TeV– but no X-ray signal)

not statistically significant – but interesting observation \Rightarrow lead to a modified search strategy and a close collaboration with the γ -ray community

71

Göttingen, Apr 07

S

Schlenstedt

Neutrino Astro-Particle

Physics

Beyond km³ Volumes

- At best a few ten astrophysical neutrino per year and km³ IceCube or Auger can detect ~one GZK neutrino per year
- ~EeV neutrinos, particularly GZK neutrinos, will be a valuable source for astroand particle physics
- 10-100 GZK events would give a quantitative measurement will allow tests of cosmic ray production models and new physics
- Many projects (e.g. Rice, ANITA, SalSA, Glue, Lofar, acoustics...) are actively seeking this goal
- IceCube: if acoustic and radio ice properties are measured to be as good as predicted

properties of ice	optical	radio	acoustic
absorption [km]	0.1	1	~10 ?
energy threshold [eV]	~ 10 ⁹	~ 10 ¹⁵	~ 10 ¹⁸

 proceed from a South Pole acoustic and radio test set-up to a hybrid detector (IceCube + Acoustic + Radio) EeV Neutrino Array

Cosmic Ray Composition

What is the matter that comes from the cosmos made of?

S

µ/e Ratio reflects CR Composition

S

Cosmic Ray Composition

 resolution ~7% in Eprimary
mean In(A) normalized to direct measurements (normalization bin not shown)

Cosmic ray spectrum becomes heavier around the knee

Cosmic Ray Composition

 resolution ~7% in Eprimary
mean In(A) normalized to direct measurements (normalization bin not shown)

Cosmic ray spectrum becomes heavier around the knee

Diffuse Searches now and in the Future

Supernova system

