

Cosmic Ray Physics with the IceTop Air Shower Array

Hermann Kolanoski Humboldt-Universität zu Berlin

SNOWPAC - March 22-28, 2010

Outline

- Cosmic rays: what IceCube/IceTop can contribute
- IceTop: the air shower array of IceCube
- Energy spectra

- AND - THE PARTY

- Methods of composition determination
- IceTop-InIce coincidences → composition
- ... and more: heliospheric, atmospheric physics with IceTop

Energy Spectrum at the Knee

CR Composition from Direct Measurements

SNOWPAC - March 22-28, 2010

relative abundances depend very much on high-energy hadronic models

SNOWPAC - March 22-28, 2010

SNOWPAC - March 22-28, 2010

The IceCube Collaboration

Canada:

University of Alberta

USA:

Bartol Research Institute, Delaware Pennsylvania State University **UC Berkeley UC** Irvine **Clark-Atlanta University** University of Maryland University of Wisconsin-Madison **University of Wisconsin-River Falls** Lawrence Berkeley National Lab. University of Kansas Southern University and A&M College, Baton Rouge University of Alaska, Anchorage **Ohio State University** University of Alabama Georgia Institute of Technology

Sweden:

Uppsala Universitet Stockholm Universitet

UK: Oxford University

Switzerland: EPFL

MF RV Un

Belgium: Université Libre de Bruxelles Vrije Universiteit Brussel

Universiteit Gent Université de Mons-Hainaut

Germany:

Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt Universität MPI Heidelberg RWTH Aachen Universität Bonn Universität Bochum

> Japan: Chiba University

University of West Indies

~36 institutions, ~250 members http://icecube.wisc.edu

New Zealand: University of Canterbury

IceTop Detector Array 2009/10

IceTop Signal Recording

SNOWPAC - March 22-28, 2010

Longitudinal Shower Profile

Longitudinal Shower Profile

Gaisser-Hillas Formula:

$$N_e(X) = N_{e,max} \left(\frac{X - X_1}{X_{max} - X_1}\right)^{\frac{X_{max} - X_1}{\lambda}} \exp \frac{X_{max} - X}{\lambda}$$

SNOWPAC - March 22-28, 2010

Shower Development for Different Nuclei

Air Shower Reconstruction

SNOWPAC - March 22-28, 2010

Unfolding with a) proton or b) iron

- Preliminary Results! -

- \rightarrow Flux not isotropic for proton or iron only assumptions
- \rightarrow Mixed composition needed!
- \rightarrow Isotropy requirement leads to

Composition sensitivity with IceTop only!

Shower Development for Different Nuclei

Unfolding with Composition Models

SNOWPAC - March 22-28, 2010

Generating the Response Matrix for Different Models

model		А	$Z_{\overline{10}}$	$I_{\rm PeV,lg}_{^{-6}{\rm m}^{-2}{\rm s}^{-1}{\rm s}}$	$-\gamma_1$	$-\gamma_2$	$E_{ m knee}$ PeV
only protons	Н	1.0	1.0	5.47	2.66	3.08	3.08
poly-gonato	Η	1.0	1.0	1.61	2.71	$-\gamma_1 + 2.1$	4.49
	He	4.0	2.0	1.71	2.64	$-\gamma_1 + 2.1$	$Z \cdot E_{\rm knee,H}$
	CNO	14.2	7.1	0.673	2.67	$-\gamma_1 + 2.1$	$Z \cdot E_{\mathrm{knee},\mathrm{H}}$
	Mg-S	27.2	13.5	0.514	2.64	$-\gamma_1 + 2.1$	$Z \cdot E_{\rm knee,H}$
	Mn-Fe	55.7	25.9	0.997	2.57	$-\gamma_1 + 2.1$	$Z \cdot E_{\mathrm{knee},\mathrm{H}}$
two-comp.	Η	1.0	1.0	3.89	2.67	3.39	4.1
	Fe	1.0	1.0	1.95	2.66	_	_
only iron	Fe	56.0	26.0	5.47	2.66	3.08	3.08

Preliminary Results with Poly-Gonato Model

S.Klepser et al., ICRC 2007

- 1 month of data only
- 26/80 of the detector

• 1 to 80 PeV

$$\begin{aligned} \mathsf{E}_{\mathsf{knee}} &= (3.1 \pm 0.3 \; (\mathsf{stat.}) \pm 0.3 \; (\mathsf{sys.})) \; \mathsf{PeV} \\ \gamma_1 &= 2.71 \pm 0.07 \; (\mathsf{stat.}) & (\mathsf{prelim}) \\ \gamma_2 &= 3.110 \pm 0.014 \; (\mathsf{stat.}) \pm 0.08 \; (\mathsf{sys.}) \\ \\ \frac{dI}{d \log_{10} E} &= I_{\mathrm{PeV,lg}} \cdot \left(\frac{E}{1 \; \mathrm{PeV}}\right)^{\gamma_1 + 1} \cdot \left(1 + \left(\frac{E}{E_{\mathrm{knee}}}\right)^{\varepsilon}\right)^{(\gamma_2 - \gamma_1)/\varepsilon} \end{aligned}$$

Systematics: $\approx 9 - 11$ % in E

first IceTop analysis for energy spectrum \rightarrow we know now our main systematics

Comparison with other Experiments

SNOWPAC - March 22-28, 2010

IceTop Prospects for Composition Analyses

IceTop – InIce coincidences

 IceTop: zenith angle dependence of shower development

Muon counting with IceTop

Complementary methods ↓ test of models

An IceCube – IceTop Coincident Event

SNOWPAC - March 22-28, 2010

Composition-dependence: factor 2 - 3 between p and Fe

T. Feusels, J. Eisch, C. Xu (IceCube, ICRC 2009, paper 0518)

SNOWPAC - March 22-28, 2010

Muon Fraction in IceTop

Muons at the Surface

Adam Lucke, 2008

Muon abundance sensitive on mass

- in addition: "Soft" Local Coincidence → measure single muons
- alternative (?): analysis of rise time of signal pulses

Atmospheric Variations as observed by IceCube

Ozon Layer Temperature

Heliospheric Physics

13 Dec 2006 Solar Flare Detection by IceTop

[ApJ Lett., 689: L65–L68, 2008]

On 2006 December 13 the IceTop air shower array at the South Pole detected a major solar particle event.

... the response of the IceTop tanks with multiple thresholds deployed at high altitude with no geomagnetic cutoff,

Heliospheric Physics with IceTop

This is the first such spectral

measurement using a single

instrument with a welldefined

viewing direction.

By numerically simulating the response of the IceTop tanks, we determined the particle energy spectrum in the energy range 0.6–7.6 GeV.

 10^{2} comparison with neutron detectors $A = 1.77 \begin{array}{c} +0.42 \\ -0.36 \end{array} \times 10^{-2}$ 100 ▲ IceTop 90 Oulu 10⁰ 80 Flux [1/cm² sr s MeV] $\gamma = -6.23 \pm 0.21$ Percent Increase atity 70 Mawson 60 50 Barentsburg 40 10⁻² 30 Norils ΑP^γ 20 10 10-4 -9 Vashenyuk et al. (2007b) Spectral Index ceTop -7 10⁻⁶ 0.1 급 0.01 10 · Energy [GeV] 02:20 02:40 03:00 03:20 03:40 04:00 04:20 04:40 05:00 05:20 05:40 06:00 2006 December 13

plans for improved resolution of solar particle spectra: take **differential energy spectra** ("multi-threshold" rates)

SNOWPAC - March 22-28, 2010

Summary

 first preliminary IceTop energy spectrum for 26/80 of the detector, 1 month

• the spectrum was analysed in terms of **composition** models

exploiting the **zenith angle dependence** of shower development on the composition

• prospects for composition analysis up to 1 EeV:

- IceTop-InIce coincidence yielding:

energy – muon number correlations

- muon counting in IceTop
- complementary methods \Rightarrow test of models
- other science topics open up:
 - atmosphere, sun, ...

The End