

The IceTop Air Shower Array: detector overview, physics goals, first results

Hermann Kolanoski Humboldt-Universität zu Berlin and DESY (Zeuthen)

for the IceCube Collaboration

ICRC Aug. 11-18, 2011 in Beijing

IceTop - the air shower array of IceCube

IceCube with IceTop is a 3-dim Air Shower Detector

- Cosmic Ray energy spectrum $10^{14} 10^{18} \text{ eV}$
- Composition analysis with IceTop + IceCube
- Galactic extra-galactic transition
- physics of airshowers
- heliospheric physics, transient events
- EAS Veto for neutrinos in IceCube
- direction calibration
- and more

Energy range of IceCube/IceTop

Threshold energy

- < 300 TeV

Maximum energy

- Limited by km² size
- Coincident events
 - $A \cdot Q = 0.3 \text{ km}^2 \text{ sr}$
 - $E_{max} = \text{EeV}$
- IceTop only ($\theta < 60^{\circ}$)
 - $A \cdot Q = 3 \text{ km}^2 \text{ sr}$
 - $E_{max} = 3 \, \text{EeV}$

Anchor to direct measurement Look for transition to of composition ~300 TeV

extra-galactic < EeV

Final IceTop Detector Array 2011

final detector:

81 stations (162 tanks)

mostly ~ 125 m; 3 inserts (+5 closest)

Snow surface

ICRC Aug.11-18, 2011 in Beijing

IceTop Signal Recording

Trigger and Data Selection

Single DOM above threshold:

 \Rightarrow digitization of waveform (3.3 ns bins)

Local Coincidence (=HLC):

require both with DOMs above threshold \Rightarrow readout of full waveform to IceCube Lab

Soft Local Coincidence (=SLC):

upon a trigger any DOM above threshold is read out with timestamp and integrated charge \Rightarrow catch single muons

MinBias

downscaled for calibration with single muons

Reconstruction:

standard:	5 stations $\Rightarrow \ge 1 \text{ PeV}$
infill extension:	\geq 3 stations \Rightarrow \geq 100 Te

Full Shower Reconstruction

see also poster #336

tank signals =
$$(\vec{x}_i, q_i, t_i) \Rightarrow 6$$
 free parameters: $(S_{125}, \beta, \vec{x}_c, \theta, \phi)$

ICRC Aug.11-18, 2011 in Beijing

First IceCube Composition Measurement IC 40 talk #923

ICRC Aug.11-18, 2011 in Beijing

First Look into 2010 Data

Strategies of Composition Analyses

IceTop & InIce

IceTop EM vs InIce MUON

IceTop

- zenith angle of e.m.
- curv. of shower front
- GeV-muons in IceTop:
- IceTop & Radio (future, see paper #1102)

- shower max. X_{max}

Complementary methods reduce model dependency

Supporting Composition Measurements

ICRC Aug. 11-18, 2011 in Beijing

High-p_T Muons in IceTop-IceCube (#323)

Measure muon separation spectrum out to hundreds of meters

Another test of models:

pQCD predicts high– p_T muons from π , K, charm, bottom,

IceTop's EHE Veto (#778)

improving the search for GZK neutrinos

HLC = 'hard local coincidence': both tanks of a station above threshold \Rightarrow full readout

Relaxe to SLC = 'soft local coincidence' \Rightarrow only charge & time stamp read out \Rightarrow available for any trigger

Opens an EHE neutrino window for smaller zenith angles

At sufficiently high energy:

 100% background rejection at > 90% signal efficiency

seems feasible, see poster #778

PeV Gamma with InIce Veto against muons

Low energy transient rate variations from Sun, SN, GRB, ...

Forbush Decrease in IceTop #921

Since the first Sun flare observation Dec 13, 2006: [ApJ Lett 689 (2008) L65]

IceTop increased spectral sensitivity taking differential rates at multiple thresholds

Summary

IceCube/IceTop is a unique 3-dim Air Shower Detector

First Results on:

- Cosmic Ray energy spectrum 10¹⁴ 10¹⁸ eV
- CR composition: unique capability up to 10¹⁸ eV
- Galactic extrac-galactic transition
- physics of airshowers
- heliospheric physics, transient events
- EAS Veto for neutrinos in IceCube
- ... and the future: radio extension (RASTA)

